首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Adaptive isogeometric analysis by local h-refinement with T-splines
【24h】

Adaptive isogeometric analysis by local h-refinement with T-splines

机译:通过T样条曲线的局部h细化进行自适应等几何分析

获取原文
获取原文并翻译 | 示例

摘要

Isogeometric analysis based on non-uniform rational B-splines (NURBS) as basis functions preserves the exact geometry but suffers from the drawback of a rectangular grid of control points in the parameter space, which renders a purely local refinement impossible. This paper demonstrates how this difficulty can be overcome by using T-splines instead. T-splines allow the introduction of so-called T-junctions, which are related to hanging nodes in the standard FEM. Obeying a few straightforward rules, rectangular patches in the parameter space of the T-splines can be subdivided and thus a local refinement becomes feasible while still preserving the exact geometry. Furthermore, it is shown how state-of-the-art a posteriori error estimation techniques can be combined with refinement by T-splines. Numerical examples underline the potential of isogeometric analysis with T-splines and give hints for further developments.
机译:基于非均匀有理B样条(NURBS)作为基函数的等几何分析保留了精确的几何形状,但存在参数空间中控制点的矩形网格的缺点,这使得无法进行纯局部精化。本文演示了如何通过使用T样条曲线来克服此困难。 T样条允许引入所谓的T形结,这些T形结与标准FEM中的悬挂节点有关。遵循一些简单的规则,可以细分T样条的参数空间中的矩形面片,因此在保持精确几何形状的同时进行局部细化是可行的。此外,它还显示了如何将最新的后验误差估计技术与T样条曲线的优化相结合。数值示例强调了使用T样条进行等几何分析的潜力,并为进一步的发展提供了提示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号