首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics
【24h】

Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics

机译:基于不连续Galerkin的断裂力学扩展有限元方法的稳定性和收敛性证明

获取原文
获取原文并翻译 | 示例

摘要

We prove the optimal convergence of a discontinuous-Galerkin-based extended finite element method for two-dimensional linear elastostatic problems over cracked domains. The method, which we proposed earlier [1], has two distinctive traits: a) it enriches the finite element space with the modes I and II singular asymptotic crack tip fields over a neighborhood of the crack tip termed the enrichment region, and b) it allows functions in the finite element space to be discontinuous across the boundary between the enrichment region and the rest of the domain. The treatment for this discontinuity, generally a non-polynomial function, is facilitated by a specially designed discontinuous Galerkin method based on the Bassi-Rebay numerical flux. The stability of the method is contingent upon an inf-sup condition, which we have proved to hold for any quasiuniform mesh family with sufficiently fine meshes. We have also shown the optimal convergence of the displacement and stress fields, and the convergence of the stress intensity factors extracted as the coefficients of the enrichment functions.
机译:我们证明了基于不连续Galerkin的扩展有限元方法在裂纹域上的二维线性弹性静力学问题的最优收敛性。我们先前提出的方法[1]具有两个鲜明的特征:a)在模式为富集区域的裂纹尖端附近,用模式I和II奇异渐近裂纹尖端场丰富有限元空间。它允许有限元空间中的函数在富集区域与域的其余部分之间的边界上不连续。通过基于Bassi-Rebay数值通量的特殊设计的不连续Galerkin方法,可以简化对这种不连续性(通常是非多项式函数)的处理。该方法的稳定性取决于infsup条件,我们证明了该条件对于具有足够精细网格的任何准均匀网格族都适用。我们还显示了位移场和应力场的最佳收敛性,以及作为富集函数系数提取的应力强度因子的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号