首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids
【24h】

A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids

机译:基于裂纹的几乎不可压缩的固体的无锁定且最优收敛的基于不连续Galerkin的扩展有限元方法

获取原文
获取原文并翻译 | 示例

摘要

The extended finite element method (XFEM) is an efficient way to include discontinuities, such as a crack, into a finite element mesh. The singularity at the crack tip restricts standard finite element methods to converge with a rate of at most 1 /2 for the stresses, and 1 for the displacements, with respect to the mesh size. This is true for cracks in incompressible materials as well, when any of the standard techniques to sidestep locking is adopted. To attain an optimal convergence rate of 1 for stresses and of 2 for displacements with piecewise affine elements, it is necessary to enrich the finite element space with singular basis functions. The support of these singular functions is the entire plane, but to avoid decreasing the sparsity of the stiffness matrix too much, each of them is then generally localized to a neighborhood of the crack tip by multiplying by a cutoff function or a subset of a partition-of-unity basis. For nearly incompressible materials, however, the resulting basis functions no longer contain incompressible displacement fields, and hence they either lead to locking or suboptimal convergence rates. To overcome this problem, we introduce here an XFEM with optimal convergence rate and without the problem of locking for nearly incompressible materials, i.e., it possesses an error bound that does not diverge as Poisson's ratio approaches 0.5. The method is based on a primal, or one-field formulation of a discontinuous Galerkin method that we introduced earlier. This one-field formulation is obtained through the introduction of a lifting operator, but unlike most lifting operators which map inter-element discontinuities into elementwise polynomials, ours maps such discontinuities into spaces enriched with the singular behavior of the solution. This is the key idea for the method to be simultaneously locking-free and optimally convergent.
机译:扩展有限元方法(XFEM)是一种有效的方法,可以将诸如裂纹之类的不连续性包含到有限元网格中。相对于网格尺寸,裂纹尖端处的奇异性限制了标准有限元方法的收敛速度,即应力最大为1/2,位移最大为1。当采用任何标准方法来避免回锁时,对于不可压缩材料中的裂缝也是如此。为了使应力的最佳收敛速度为1,对于具有分段仿射元素的位移,最佳收敛速度为2,有必要用奇异的基函数丰富有限的元素空间。这些奇异函数的支持是整个平面,但是为了避免过多降低刚度矩阵的稀疏性,通常将它们中的每一个通过乘以截止函数或一部分分区来定位在裂纹尖端附近。团结的基础。但是,对于几乎不可压缩的材料,所得的基函数不再包含不可压缩的位移场,因此它们要么导致锁定,要么导致收敛速度不理想。为了克服这个问题,我们在这里介绍一种XFEM,它具有最佳收敛速度,并且没有锁定几乎不可压缩的材料的问题,即它具有的误差范围不会随着泊松比接近0.5而发散。该方法基于我们先前介绍的不连续Galerkin方法的原始或单场公式。这种单场公式是通过引入提升算子获得的,但与大多数提升算子将元素间的不连续性映射到元素多项式不同,我们的映射将这种不连续性映射到充斥了解决方案奇异行为的空间中。这是该方法要同时无锁定且达到最佳收敛的关键思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号