首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Free vibrations of laminated composite doubly-curved shells and panels of revolution via the GDQ method
【24h】

Free vibrations of laminated composite doubly-curved shells and panels of revolution via the GDQ method

机译:叠层复合材料双弯曲壳体和旋转面板的自由振动,通过GDQ方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the Generalized Differential Quadrature (GDQ) method is applied to study the dynamic behaviour of laminated composite doubly-curved shells of revolution. The First-order Shear Deformation Theory (FSDT) is used to analyze the above mentioned moderately thick structural elements. The governing equations of motion, written in terms of stress resultants, are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of points lying on the middle surface of the shell. The discretization of the system by means of the Differential Quadrature (DQ) technique leads to a standard linear eigenvalue problem, where two independent variables are involved. Results are obtained taking the meridional and circumferential co-ordinates into account, without using the Fourier modal expansion methodology. Examples of hyperbolic, catenary, cycloid, parabolic, elliptic and circular shell and panel structures are presented to illustrate the validity and the accuracy of the GDQ method. Furthermore, GDQ results are compared with those presented in literature and the ones obtained by using commercial programs such as Abaqus, Ansys, Nastran, Straus and Pro/Mechanica. Very good agreement is observed.
机译:本文采用广义差分正交(GDQ)方法研究了层状复合材料双曲线旋转壳的动力学行为。一阶剪切变形理论(FSDT)用于分析上述中等厚度的结构单元。通过使用本构关系和运动学关系,以应力合力形式表示的运动控制方程表示为五个运动学参数的函数。根据位于壳体中间表面上的点的广义位移分量给出解决方案。通过差分正交(DQ)技术对系统进行离散化会导致一个标准的线性特征值问题,其中涉及两个自变量。在不使用傅立叶模态展开方法的情况下,在考虑子午线和周向坐标的情况下获得了结果。给出了双曲线,悬链线,摆线,抛物线形,椭圆形和圆形壳和面板结构的示例,以说明GDQ方法的有效性和准确性。此外,将GDQ结果与文献中的结果以及使用商业程序(例如Abaqus,Ansys,Nastran,Straus和Pro / Mechanica)获得的结果进行比较。观察到非常好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号