首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems
【24h】

Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems

机译:对于单调非线性问题,保证和鲁棒的后验误差估计以及平衡离散化和线性化误差

获取原文
获取原文并翻译 | 示例

摘要

We derive a posteriori error estimates for a class of second-order monotone quasi-linear diffusion-type problems approximated by piecewise affine, continuous finite elements. Our estimates yield a guaranteed and fully computable upper bound on the error measured by the dual norm of the residual, as well as a global error lower bound, up to a generic constant independent of the nonlinear operator. They are thus fully robust with respect to the nonlinearity, thanks to the choice of the error measure. They are also locally efficient, albeit in a different norm, and hence suitable for adaptive mesh refinement. Moreover, they allow to distinguish, estimate separately, and compare the discretization and linearization errors. Hence, the iterative (Newton-Raphson, fixed point) linearization can be stopped whenever the linearization error drops to the level at which it does not affect significantly the overall error. This can lead to important computational savings, as performing an excessive number of unnecessary linearization iterations can be avoided. A strategy combining the linearization stopping criterion and adaptive mesh refinement is proposed and numerically tested for the p-Laplacian.
机译:我们推导了一类由分段仿射,连续有限元近似的二阶单调拟线性扩散型问题的后验误差估计。我们的估计可得出由残差对偶范数所测得的误差的有保证且可完全计算的上限,以及与非线性算子无关的通用常数,它的全局误差下界为上限。因此,由于选择了误差度量,因此它们在非线性方面具有完全的鲁棒性。它们也具有局部效率,尽管采用了不同的规范,因此适用于自适应网格细化。而且,它们允许区分,分别估计和比较离散化和线性化误差。因此,只要线性化误差下降到不会显着影响整体误差的水平,就可以停止迭代(牛顿-拉夫森,固定点)线性化。由于可以避免执行过多的不必要的线性化迭代,因此可以节省大量的计算资源。提出了一种将线性化停止准则与自适应网格细化相结合的策略,并对p-Laplacian进行了数值测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号