首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods
【24h】

Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods

机译:基于单位有限元方法的三维划分的线性相关性问题的研究

获取原文
获取原文并翻译 | 示例

摘要

A known problem of partition of unity-based generalized finite element methods is the linear depen-dence of the approximation space, which leads to singular stiffness matrix. Up to now, the linear depen-dence problem has not been fully understood and an efficient way to alleviate it is not available. In our previous paper "Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes" [Comput. Methods Appl. Mech. Engrg. 200 (2011) 665-674], the origin of the linear dependence problem was first dissected and then a method was proposed to reliably predict the rank deficiency of the linearly dependent global approximations of two-dimensional partition of unity-based generalized finite element methods. This paper extends the previous work to three-dimensional cases. The linear dependence problem is first investigated at an element level and then extended to the whole mesh. Derivation of general formulations in a three-dimensional setting is undoubtedly more challenging than a two-dimensional setting because of the complicated element topology. The principle of the increase of rank deficiency is once more applied. The methodology of summing up the added rank deficiency of each element as that of the whole mesh is further proved to be valid in three-dimensional cases. This work together with the previous work is regarded as the essential step to successfully and completely solve the linear dependence problem in partition of unity-based finite element methods.
机译:基于单位的广义有限元方法划分的一个已知问题是近似空间的线性相关性,这导致了奇异的刚度矩阵。到目前为止,线性依赖问题还没有被完全理解,并且还没有减轻它的有效方法。在我们之前的论文“使用平面三角形或四边形网格的基于单位的方法划分中的秩不足的预测”中。方法应用。机甲gr 200(2011)665-674],首先剖析线性相关性问题的起源,然后提出一种可靠地预测基于单位的广义有限元方法二维划分的线性相关全局近似的秩不足的方法。本文将先前的工作扩展到三维案例。首先在元素级别研究线性相关性问题,然后将其扩展到整个网格。由于复杂的元素拓扑,在二维设置中推导通用公式无疑比二维设置更具挑战性。再次增加等级不足的原则。总结了将每个元素的附加秩不足与整个网格的秩不足相加的方法在三维情况下是有效的。这项工作与以前的工作一起被认为是成功和完全解决基于单位的有限元方法划分中的线性相关性问题的必要步骤。

著录项

  • 来源
  • 作者单位

    School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore;

    School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore;

    College of Civil Engineering and Architecture, Nanchang Hongkong University, Nanchang, Jiangxi 330063, PR China;

    State Key Laboratory for the Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    partition of unity-based generalized finite; element methods; linear dependence problem; rank deficiency;

    机译:基于单位的广义有限分区元素方法;线性相关问题等级不足;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号