首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A meshfree level-set method for topological shape optimization of compliant multiphysics actuators
【24h】

A meshfree level-set method for topological shape optimization of compliant multiphysics actuators

机译:无网格水平集方法,用于顺应多物理场致动器的拓扑形状优化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a topology optimization method for compliant multiphysics actuators of geometrically nonlinear structures using meshfree Galerkin weak-forms and level set methods. The design boundary is implicitly represented as the zero level set of a higher-dimensional level set function, leading to a level set model capable of handling complex shape and topological changes with flexibilities. A family of compactly supported radial basis functions (CSRBFs) is firstly used to interpolate the level set function of Lipschitz continuity, and then augmented to construct the shape function for meshless approximation by satisfying basic requirements, in particular the predetermined consistency and the Kronecker delta function property. A meshless Galerkin method (MGM) with global weak-forms is established to implement the discretization of the state equations. The design of actuators is transformed into an easier size optimization from a more difficult shape and topology optimization. The design boundary evolution is just a question of advancing the discrete level set function in time by updating the design variables of the size optimization. Compared to most conventional level set methods, the proposed meshless level set method is able to implement the free moving boundary discontinuities without remeshing, and unify two different numerical procedures in propagating the discrete level set function (e.g. Eulerian grid) and approximating the state equation (e.g. Lagrangian mesh), respectively. This method can also avoid numerical difficulties in solving a series of complicate Hamilton-Jacobi partial differential equations (PDEs) with explicit time schemes. Two typical numerical examples are used to demonstrate the effectiveness of the proposed method.
机译:本文提出了一种使用无网格Galerkin弱形式和水平集方法的几何非线性结构顺应性多物理场致动器拓扑优化方法。设计边界隐式地表示为高维水平集函数的零水平集,从而导致一个水平集模型能够处理具有柔性的复杂形状和拓扑变化。首先使用一系列紧密支持的径向基函数(CSRBF)内插Lipschitz连续性的水平集函数,然后通过满足基本要求(尤其是预定的一致性和Kronecker德尔塔函数)进行扩充,以构建形状函数以实现无网格近似属性。建立了具有全局弱形式的无网格Galerkin方法(MGM)以实现状态方程的离散化。执行器的设计从更困难的形状和拓扑优化转变为更容易的尺寸优化。设计边界演变只是通过更新尺寸优化的设计变量来及时推进离散水平集功能的问题。与大多数常规的水平集方法相比,所提出的无网格水平集方法能够实现自由移动的边界不连续性而无需重新网格化,并且在传播离散水平集函数(例如欧拉网格)和逼近状态方程(例如拉格朗日网格)。该方法还可以避免在用显式时间格式求解一系列复杂的Hamilton-Jacobi偏微分方程(PDE)时遇到数值困难。两个典型的数值例子被用来证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号