首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Local time-stepping in Runge-Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations
【24h】

Local time-stepping in Runge-Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations

机译:Runge-Kutta不连续Galerkin有限元方法中的局部时步应用于浅水方程

获取原文
获取原文并翻译 | 示例

摘要

Large geophysical flows often encompass both coarse and highly resolved regions. Approximating these flows using shock-capturing methods with explicit time stepping gives rise to a Courant-Friedrichs-Lewy (CFL) time step constraint. Even if the refined regions are sparse, they can restrict the global CFL condition to very small time steps, vastly increasing computational effort over the whole domain. One method to cope with this problem is to use locally varying time steps over the domain. These are also referred to as multi-rate methods in the ODE literature. Ideally, such methods must be conservative, accurate and easy to implement. In this study, we derive a second-order, local time stepping procedure within a Runge-Kutta discontinuous Galerkin (RKDG) framework to solve the shallow water equations. This procedure is based on previous first-order work of the second author and collaborator Kirby [1-3]. As we are interested in both coastal and overland flows due to, e.g., rainfall, wetting and drying is incorporated into the model. Numerical results are shown, which verify the accuracy and efficiency of the approach (compared to using a globally defined CFL time step), and the application of the method to rainfall-runoff scenarios.
机译:较大的地球物理流量通常同时包含粗糙和高分辨率区域。使用具有显式时间步长的震荡捕获方法来近似这些流会产生Courant-Friedrichs-Lewy(CFL)时间步长约束。即使精炼区域稀疏,它们也可以将全局CFL条件限制为非常小的时间步长,从而极大地增加了整个域的计算工作量。解决此问题的一种方法是在域上使用本地变化的时间步长。这些在ODE文献中也称为多速率方法。理想地,此类方法必须保守,准确且易于实施。在这项研究中,我们在Runge-Kutta间断Galerkin(RKDG)框架内推导了二阶局部时间步进程序,以解决浅水方程。此过程基于第二作者和合作者Kirby [1-3]先前的一阶工作。由于我们对由于降雨等引起的沿海和陆上流量都感兴趣,因此将湿润和干燥纳入了模型。显示了数值结果,这些结果验证了该方法的准确性和效率(与使用全局定义的CFL时间步长相比),以及该方法在降雨径流情景中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号