首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Convergence of an efficient local least-squares fitting method for bases with compact support
【24h】

Convergence of an efficient local least-squares fitting method for bases with compact support

机译:具有紧凑支撑的基座的有效局部最小二乘拟合方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

The least-squares projection procedure appears frequently in mathematics, science, and engineering. It possesses the well-known property that a least-squares approximation (formed via orthogonal projection) to a given data set provides an optimal fit in the chosen norm. The orthogonal projection of the data onto a finite basis is typically approached by the inversion of a Gram matrix involving the inner products of the basis functions. Even if the basis functions have compact support, so that the Gram matrix is sparse, its inverse will be dense. Thus computing the orthogonal projection is expensive. An efficient local least-squares algorithm for non-orthogonal projection onto smooth piecewise-polynomial basis functions is analyzed. The algorithm runs in optimal time and delivers the same order of accuracy as the standard orthogonal projection. Numerical results indicate that in many computational situations, the new algorithm offers an effective alternative to global least-squares approximation.
机译:最小二乘投影程序经常出现在数学,科学和工程学中。它具有众所周知的属性,即对给定数据集的最小二乘近似(通过正交投影形成)可在所选范数中提供最佳拟合。数据在有限基础上的正交投影通常通过对包含基础函数内积的Gram矩阵求逆来实现。即使基函数具有紧凑的支持,因此Gram矩阵是稀疏的,其逆也会密集。因此,计算正交投影是昂贵的。分析了将非正交投影到平滑分段多项式基函数上的有效局部最小二乘算法。该算法在最佳时间运行,并提供与标准正交投影相同的精度等级。数值结果表明,在许多计算情况下,新算法为全局最小二乘逼近提供了有效的替代方法。

著录项

  • 来源
  • 作者单位

    Structural Engineering, Mechanics, and Materials, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA;

    Department of Mathematics, University of California, Berkeley, CA 94720, USA;

    Structural Engineering, Mechanics, and Materials, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA;

    Structural Engineering, Mechanics, and Materials, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    least squares; isogeometric analysis; dirichlet boundary conditions;

    机译:最小二乘等几何分析Dirichlet边界条件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号