首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics
【24h】

A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics

机译:用于线性弹性断裂力学的稳定且最佳收敛的广义FEM(SGFEM)

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the accuracy and conditioning of the Stable Generalized FEM (SGFEM) and compare it with standard Generalized FEM (GFEM) for a 2-D fracture mechanics problem. The SGFEM involves localized modifications of enrichments used in the GFEM and the conditioning of the stiffness matrix in this method is of the same order as in the FEM. Numerical experiments show that using the SGFEM with only the modified Heaviside functions, which are used as enrichments in the GFEM, to approximate the solution of fracture problems in 2-D, gives inaccurate results. However, the SGFEM using an additional set of enrichment function yields accurate results while not deteriorating the conditioning of the stiffness matrix.Rules for the selection of the optimal set of enrichment nodes based on the definition of enrichment functions used in the SGFEM are also presented. This set leads to optimal convergence rates while keeping the number of degrees of freedom equal to or close to the GFEM. We show that it is necessary to enrich additional nodes when the crack line is located along element edges in 2-D. The selection of these nodes depends on the definition of the enrichment functions at the crack discontinuity. A simple and yet generic implementation strategy for the SGFEM in an existing GFEM/XFEM software is described. The implementation can be used with 2-D and 3-D elements. It leads to an efficient evaluation of SGFEM enrichment functions.
机译:在本文中,我们研究了稳定广义有限元法(SGFEM)的准确性和条件,并将其与标准广义有限元法(GFEM)进行了二维断裂力学问题的比较。 SGFEM涉及在GFEM中使用的富集的局部修改,并且此方法中刚度矩阵的调节与FEM中的顺序相同。数值实验表明,仅使用具有改进的Heaviside函数的SGFEM(用于GFEM的富集)来近似求解二维裂缝问题时,得出的结果不准确。然而,使用额外的一组富集函数的SGFEM可以产生准确的结果,而不会恶化刚度矩阵的条件。还提出了基于SGFEM中使用的富集函数的定义来选择最佳富集节点集的规则。该集合导致最佳收敛速度,同时保持自由度的数量等于或接近GFEM。我们表明,当裂纹线沿二维中的元素边缘定位时,有必要丰富其他节点。这些节点的选择取决于裂纹不连续处的富集函数的定义。描述了现有GFEM / XFEM软件中SGFEM的一种简单而通用的实现策略。该实现可与2-D和3-D元素一起使用。它可以有效评估SGFEM富集功能。

著录项

  • 来源
  • 作者单位

    Department of Civil and Environmental Engr., University of Illinois at Urbana-Champaign, Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801, USA;

    Department of Civil and Environmental Engr., University of Illinois at Urbana-Champaign, Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801, USA;

    ICES, University of Texas at Austin, Austin, TX 78712, USA;

    Department of Mathematics, Syracuse University, 215 Carnegie, Syracuse, NY 13244, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generalized FEM; Extended FEM; Blending elements; Condition number; Fracture; Enrichment;

    机译:广义有限元扩展有限元混合元素;条件编号;断裂;丰富;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号