首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A simple, first-order, well-conditioned, and optimally convergent Generalized/eXtended FEM for two- and three-dimensional linear elastic fracture mechanics
【24h】

A simple, first-order, well-conditioned, and optimally convergent Generalized/eXtended FEM for two- and three-dimensional linear elastic fracture mechanics

机译:一种简单,一阶,条件良好的,最佳地收敛的广义/扩展的FEM,用于两维线性弹性骨折力学

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a first-order Generalized/eXtended Finite Element Method (G/XFEM) for 2-D and 3-D linear elastic fracture mechanics problems. The conditioning of the method is of the same order as the standard FEM and it is robust with respect to the position of the mesh relative to 2-D or 3-D fractures. The method achieves an optimal rate of convergence in energy norm even when the solution of the problem in the neighborhood of the fracture front is not contained in the spaces spanned by the adopted singular enrichments. Control of conditioning associated with Heaviside enrichment functions is achieved by shifting them by their nodal values, combined with a diagonal pre-conditioner. In the case of singular enrichment functions, a simple extension of the enrichment shifting concept, denoted as discontinuous-shifting, is adopted. These enrichment modifications are space-preserving-the solution space spanned by the modified enrichments is the same as the space spanned by the unmodified ones. This is often not the case for conditioning control strategies proposed in the literature. The computational cost of these enrichment modifications is negligible and their implementation in existing G/XFEM software is straightforward. The optimal convergence, well-conditioning, and robustness of the method are numerically illustrated with the aid of representative 2-D and 3-D problems, including the case of a non-planar fracture with a curved fracture front. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文提出了用于2-D和3-D线性弹性骨折力学问题的一阶广义/扩展有限元方法(G / XFEM)。该方法的调理与标准有限元件相同,并且相对于网格相对于2-D或3-D裂缝的位置是鲁棒的。该方法即使在采用的奇异富集跨越的空间中不包含骨折前部的问题的解决方案的解决方案的解决方案也是最佳的能量规范的最佳收敛速度。通过将它们通过它们的节点值转移来实现与富集富集功能相关的调理,与对角线预调节剂相结合来实现。在单数富集功能的情况下,采用了富集转换概念的简单延伸,表示为不连续移位。这些富集修改是空间保存 - 由修改的富集跨越的溶液空间与未修饰的空间相同。这通常不是文献中提出的调理控制策略的情况。这些丰富修改的计算成本可忽略不计,并且其在现有G / XFEM软件中的实现是简单的。该方法的最佳收敛性,调节和稳健性是借助于代表性的2-D和3-D问题的数量地示出,包括具有弯曲骨折前部的非平面裂缝的情况。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号