首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities
【24h】

An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities

机译:具有弱不连续性问题的带代数约束的扩展有限元方法(XFEM-AC)

获取原文
获取原文并翻译 | 示例

摘要

We present a new extended finite element method with algebraic constraints (XFEM-AC) for recovering weakly discontinuous solutions across internal element interfaces. If necessary, cut elements are further partitioned by a local secondary cut into body-fitting subelements. Each resulting subelement contributes an enrichment of the parent element. The enriched solutions are then tied using algebraic constraints, which enforce C~0 continuity across both cuts. These constraints impose equivalence of the enriched and body-fitted finite element solutions, and are the key differentiating feature of the XFEM-AC. In so doing, a stable mixed formulation is obtained without having to explicitly construct a compatible Lagrange multiplier space and prove a formal inf-sup condition. Likewise, convergence of the XFEM-AC solution follows from its equivalence to the interface-fitted finite element solution. This relationship is further exploited to improve the numerical solution of the resulting XFEM-AC linear system. Examples are shown demonstrating the new approach for both steady-state and transient diffusion problems.
机译:我们提出了一种新的具有代数约束的扩展有限元方法(XFEM-AC),用于在内部元素接口之间恢复弱不连续解。如有必要,可通过局部次要切割将切割元素进一步划分为适合身体的子元素。每个结果子元素都有助于丰富父元素。然后,利用代数约束来约束丰富的解,该代数约束在两个割之间强制执行C-0连续性。这些约束强加了富集和人体拟合的有限元解决方案,这是XFEM-AC的主要区别特征。这样,无需显式构造兼容的拉格朗日乘数空间并证明正式的注入条件即可获得稳定的混合制剂。同样,XFEM-AC解决方案的收敛从其等效性变为接口拟合的有限元解决方案。进一步利用该关系来改善所得XFEM-AC线性系统的数值解。实例显示了针对稳态和瞬态扩散问题的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号