首页> 外文期刊>Computational Mechanics >Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method
【24h】

Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method

机译:具有结构化网格的异质材料局部破坏建模的嵌入式不连续性有限元方法:扩展有限元方法的替代方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we discuss the finite element model using the embedded discontinuity of the strain and displacement field, for dealing with a problem of localized failure in heterogeneous materials by using a structured finite element mesh. On the chosen 1D model problem we develop all the pertinent details of such a finite element approximation. We demonstrate the presented model capabilities for representing not only failure states typical of a slender structure, with crack-induced failure in an elastic structure, but also the failure state of a massive structure, with combined diffuse (process zone) and localized cracking. A robust operator split solution procedure is developed for the present model taking into account the subtle difference between the types of discontinuities, where the strain discontinuity iteration is handled within global loop for computing the nodal displacement, while the displacement discontinuity iteration is carried out within a local, element-wise computation, carried out in parallel with the Gauss-point computations of the plastic strains and hardening variables. The robust performance of the proposed solution procedure is illustrated by a couple of numerical examples. Concluding remarks are stated regarding the class of problems where embedded discontinuity finite element method (ED-FEM) can be used as a favorite choice with respect to extended FEM (X-FEM).
机译:在这项工作中,我们讨论使用应变和位移场的嵌入式不连续性的有限元模型,以通过使用结构化有限元网格来解决异质材料中的局部破坏问题。在选择的一维模型问题上,我们开发了这种有限元逼近的所有相关细节。我们演示了所提出的模型功能,不仅可以表示细长结构的典型故障状态(在弹性结构中具有裂纹诱发的故障),而且还可以表示大型结构的故障状态(具有组合的扩散(过程区域)和局部裂纹)。考虑到不连续类型之间的细微差别,针对本模型开发了一种鲁棒的算子拆分求解程序,其中应变不连续迭代在全局环路内处理以计算节点位移,而位移不连续迭代在节点内进行。与塑性应变和硬化变量的高斯点计算并行进行的局部局部计算。几个数值示例说明了所提出的解决方案的鲁棒性能。关于问题类别的结论性发言,其中嵌入式不连续有限元方法(ED-FEM)可以用作扩展FEM(X-FEM)的首选。

著录项

  • 来源
    《Computational Mechanics》 |2007年第1期|149-155|共7页
  • 作者单位

    Ecole Normale Supérieure de Cachan LMT 61 avenue de Président Wilson 94235 Cachan France;

    Ecole Normale Supérieure de Cachan LMT 61 avenue de Président Wilson 94235 Cachan France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号