首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Isogeometric Kirchhoff-Love shell formulations for biological membranes
【24h】

Isogeometric Kirchhoff-Love shell formulations for biological membranes

机译:用于生物膜的等几何Kirchhoff-Love外壳配方

获取原文
获取原文并翻译 | 示例

摘要

Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C-1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on linear isotropic materials, while biological tissues are characterized by a nonlinear anisotropic stress-strain response. Here we present a thin shell formulation for thin biological membranes. We derive the equilibrium equations using curvilinear convective coordinates on NURBS tensor product surface patches. We linearize the weak form of the generic linear momentum balance without a particular choice of a constitutive law. We then incorporate the constitutive equations that have been designed specifically for collagenous tissues. We explore three common anisotropic material models: Mooney-Rivlin, May Newman-Yin, and Gasser-Ogden-Holzapfel. Our work will allow scientists in biomechanics and mechanobiology to adopt the constitutive equations that have been developed for solid three-dimensional soft tissues within the framework of isogeometric thin shell analysis. (C) 2015 Elsevier B.V. All rights reserved.
机译:薄生物膜的计算模型可以帮助设计更好的医疗设备。显着的生物膜包括皮肤,肺泡,血管和心脏瓣膜。等几何分析非常适合生物膜,因为它固有地满足了Kirchhoff-Love运动学的​​C-1要求。然而,当前的等几何壳配方主要集中在线性各向同性材料上,而生物组织的特征是非线性各向异性应力-应变响应。在这里,我们提出了一种用于薄生物膜的薄壳配方。我们使用NURBS张量积曲面补丁上的曲线对流坐标导出平衡方程。我们将线性线性动量平衡的弱形式线性化,而无需特别选择本构定律。然后,我们结合专门为胶原组织设计的本构方程。我们探索了三种常见的各向异性材料模型:Mooney-Rivlin,May Newman-Yin和Gasser-Ogden-Holzapfel。我们的工作将使生物力学和力学生物学领域的科学家能够采用在等几何薄壳分析框架内为固体三维软组织开发的本构方程。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号