首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A simplified Kirchhoff-Love large deformation model for elastic shells and its effective isogeometric formulation
【24h】

A simplified Kirchhoff-Love large deformation model for elastic shells and its effective isogeometric formulation

机译:用于弹性壳的简化基洛夫 - 爱大变形模型及其有效的异诊制剂

获取原文
获取原文并翻译 | 示例

摘要

Isogeometric Kirchhoff-Love elements have received an increasing attention in geometrically nonlinear analysis of elastic shells. Nevertheless, some difficulties still remain. Among the others, the highly nonlinear expression of the strain measure, which leads to a complicated and costly computation of the discrete operators, and the existence of locking, which prevents the use of coarse meshes for slender shells and low order NURBS, are key issues that need to be addressed. In this work, exploiting the hypothesis of small membrane strains, we propose a simplified strain measure with a third order polynomial dependence on the displacement variables which allows an efficient evaluation of the discrete quantities. Numerical results show practically no difference to the original model, even for very large displacements and composite structures. Patch-wise reduced integrations are then investigated to deal with membrane locking in large deformation problems. An optimal integration scheme for third order C-2 NURBS, in terms of accuracy and efficiency, is identified. Finally, the recently proposed Newton method with mixed integration points is used for the solution of the discrete nonlinear equations with a great reduction of the iterative burden with respect to the standard Newton scheme. (C) 2019 Elsevier B.V. All rights reserved.
机译:Isogeometric Kirchhoff-Love Elements在弹性壳的几何非线性分析中得到了越来越长的关注。然而,一些困难仍然存在。在其他方面,应变措施的高度非线性表达,这导致离散操作员的复杂和昂贵的计算,以及阻止使用粗网格用于苗条壳和低阶NURBS的粗网,是关键问题需要解决。在这项工作中,利用小膜株的假设,我们提出了一种简化的菌株测量,其对位移变量的三阶多项式依赖性依赖于位移变量,这允许有效地评估离散量。数值结果实际上没有对原始模型的差异,即使对于非常大的位移和复合结构。然后调查补丁效率降低的集成以处理大变形问题中的膜锁定。确定了在准确性和效率方面的第三阶C-2 NURBS的最佳集成方案。最后,最近提出的具有混合积分点的牛顿方法用于离散非线性方程的解决方案,以极大地降低了标准牛顿方案的迭代负荷。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号