首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A simplified Kirchhoff-Love large deformation model for elastic shells and its effective isogeometric formulation
【24h】

A simplified Kirchhoff-Love large deformation model for elastic shells and its effective isogeometric formulation

机译:弹性壳的简化Kirchhoff-Love大变形模型及其有效等几何公式

获取原文
获取原文并翻译 | 示例

摘要

Isogeometric Kirchhoff-Love elements have received an increasing attention in geometrically nonlinear analysis of elastic shells. Nevertheless, some difficulties still remain. Among the others, the highly nonlinear expression of the strain measure, which leads to a complicated and costly computation of the discrete operators, and the existence of locking, which prevents the use of coarse meshes for slender shells and low order NURBS, are key issues that need to be addressed. In this work, exploiting the hypothesis of small membrane strains, we propose a simplified strain measure with a third order polynomial dependence on the displacement variables which allows an efficient evaluation of the discrete quantities. Numerical results show practically no difference to the original model, even for very large displacements and composite structures. Patch-wise reduced integrations are then investigated to deal with membrane locking in large deformation problems. An optimal integration scheme for third order C-2 NURBS, in terms of accuracy and efficiency, is identified. Finally, the recently proposed Newton method with mixed integration points is used for the solution of the discrete nonlinear equations with a great reduction of the iterative burden with respect to the standard Newton scheme. (C) 2019 Elsevier B.V. All rights reserved.
机译:等几何Kirchhoff-Love元素在弹性壳的几何非线性分析中受到越来越多的关注。然而,仍然存在一些困难。除其他外,关键问题是应变测量值的高度非线性表达式,这会导致离散算子的计算复杂而昂贵;锁定的存在会阻止在细长壳体和低阶NURBS中使用粗网格,这是关键问题需要解决的问题。在这项工作中,利用小膜应变的假设,我们提出了一种简化的应变测量方法,该方法具有对位移变量的三阶多项式依赖性,从而可以有效地评估离散量。数值结果表明,即使对于非常大的位移和复合结构,实际上与原始模型也没有差异。然后研究逐块减少的积分,以解决大变形问题中的膜锁定。在准确性和效率方面,确定了用于三阶C-2 NURBS的最佳集成方案。最后,最近提出的具有混合积分点的牛顿法被用于离散非线性方程的求解,相对于标准牛顿法,极大地减少了迭代负担。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号