首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Spectral analysis of coupled PDEs and of their Schur complements via Generalized Locally Toeplitz sequences in 2D
【24h】

Spectral analysis of coupled PDEs and of their Schur complements via Generalized Locally Toeplitz sequences in 2D

机译:通过二维局部广义Toeplitz序列对耦合的PDE及其Schur补体进行光谱分析

获取原文
获取原文并翻译 | 示例

摘要

We consider large linear systems of algebraic equations arising from the Finite Element approximation of coupled partial differential equations. As case study we focus on the linear elasticity equations, formulated as a saddle point problem to allow for modelling of purely incompressible materials. To analyse the properties of the arising matrices we use the notion of the so-called spectral symbol in the Generalized Locally Toeplitz (GLT) setting. The fruitful idea behind GLT is that it allows to associate a function, a symbol, with instances of a broad class of structured matrices. The symbol describes the spectrum of the corresponding matrix, easing in this way its analysis and guiding the construction of efficient approximations of the matrix to be used as preconditioners or solvers in a multigrid context. We derive the GLT symbol of the sequence of matrices {A(n)} approximating the elasticity equations. Further, exploiting the property that the GLT class defines an algebra of matrix sequences and the fact that the Schur complements are obtained via elementary algebraic operation on the blocks of A(n), we derive the symbols f(S) of the associated sequences of Schur complements {S-n}. As a consequence of the GLT theory, the eigenvalues of S-n for large n are described by a sampling of f(S) on a uniform grid of its domain of definition. We extend the existing GLT technique with novel elements, related to block-matrices and Schur complement matrices, and illustrate the theoretical findings with numerical tests. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们考虑由耦合偏微分方程的有限元逼近产生的大型线性代数方程组。作为案例研究,我们关注线性弹性方程,该方程被公式化为鞍点问题,以允许对纯不可压缩材料进行建模。为了分析出现的矩阵的属性,我们在广义局部Toeplitz(GLT)设置中使用了所谓的频谱符号的概念。 GLT背后富有成果的想法是,它允许将函数(符号)与各种结构化矩阵的实例相关联。该符号描述了相应矩阵的频谱,以这种方式简化了对其的分析,并指导了在多网格环境中用作预处理器或求解器的矩阵的有效近似的构造。我们推导近似于弹性方程的矩阵{A(n)}序列的GLT符号。此外,利用GLT类定义矩阵序列的代数的性质,以及通过对A(n)的块进行基本代数运算获得Schur补数的事实,我们推导了A的相关序列的符号f(S)。舒尔补充{Sn}。作为GLT理论的结果,大n的S-n的特征值通过在其定义域的均匀网格上采样f(S)来描述。我们用与块矩阵和Schur补矩阵有关的新颖元素扩展了现有的GLT技术,并通过数值测试说明了理论发现。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号