首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On numerical integration in isogeometric subdivision methods for PDEs on surfaces
【24h】

On numerical integration in isogeometric subdivision methods for PDEs on surfaces

机译:表面上PDE的等几何细分方法中的数值积分

获取原文
获取原文并翻译 | 示例

摘要

Subdivision surfaces offer great flexibility in capturing irregular topologies combined with higher order smoothness. For instance, Loop and Catmull-Clark subdivision schemes provide C-2 smoothness everywhere except at extraordinary vertices, where the generated surfaces are C-1 smooth. The combination of flexibility and smoothness leads to their frequent use in geometric modeling and makes them an ideal candidate for performing isogeometric analysis of higher order problems with irregular topologies, e.g. thin shell problems. In the neighborhood of extraordinary vertices, however, the resulting surfaces (and the functions defined on them) are non-polynomial. Thus numerical integration based on quadrature has to be performed carefully to preserve the expected higher order consistency.
机译:细分表面在捕获不规则拓扑以及更高阶平滑度方面提供了极大的灵活性。例如,Loop和Catmull-Clark细分方案可在任何地方提供C-2平滑度,但在异常顶点处(生成的曲面为C-1平滑度除外)。柔韧性和平滑度的结合导致它们在几何建模中的频繁使用,使其成为进行具有不规则拓扑结构(例如不规则拓扑)的高阶问题的等几何分析的理想候选对象。薄壳问题。但是,在非凡顶点附近,所得曲面(及其上定义的函数)是非多项式的。因此,必须仔细执行基于正交的数值积分,以保持预期的更高阶一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号