首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces
【24h】

Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces

机译:固定和演化表面上几何PDE和高阶PDE的相场模型的等几何分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an isogeometric analysis (IGA) for phase-field models of three different yet closely related classes of partial differential equations (PDEs): geometric PDEs, high-order PDEs on stationary surfaces, and high-order PDEs on evolving surfaces; the latter can be a coupling of the former two classes. In the context of geometric PDEs, we consider mean curvature flow and Willmore flow problems and their corresponding phase-field approximations which yield second-order and fourth-order nonlinear parabolic PDEs. Through some numerical examples, we study the convergence behavior of isogeometric analysis for these equations using the method of manufactured solutions. Moreover, we study numerically the convergence of these phase-field approximations to the sharp interface solutions. As for the high-order PDEs on stationary surfaces, we consider a model problem which is the Cahn-Hilliard equation on a unit sphere, where the surface is modeled using a diffuse-interface approach. Finally, as a model problem for high-order PDEs on evolving surfaces, we consider a phase-field model of a deforming multicomponent vesicle which couples the vesicle shape changes with the phase separation process on the vesicle surface. The model consists of two fourth-order nonlinear PDEs which their direct finite element formulation in a Galerkin framework necessitates smooth basis functions with at least global C-1 continuity; a condition that can be easily satisfied using spline bases in IGA. We solve the coupled equations both in two dimensions, where the vesicle is a curve, and in three dimensions, where the vesicle is a surface. The simulation results agree with the numerical and experimental results from the literature. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们为三种不同但密切相关的偏微分方程(PDE)类的相场模型提供了等几何分析(IGA):几何PDE,固定表面上的高阶PDE和演化中的高阶PDE表面;后者可以是前两类的结合。在几何PDE的上下文中,我们考虑了平均曲率流和Willmore流问题及其对应的相场近似,它们产生了二阶和四阶非线性抛物线型PDE。通过一些数值示例,我们使用制造的方法来研究这些方程的等几何分析的收敛性。此外,我们在数值上研究了这些相场近似到尖锐的界面解的收敛性。至于固定表面上的高阶PDE,我们考虑一个模型问题,即单位球面上的Cahn-Hilliard方程,其中使用扩散界面方法对表面进行建模。最后,作为演化表面上高阶PDE的模型问题,我们考虑了变形多组分囊泡的相场模型,该模型将囊泡形状变化与囊泡表面上的相分离过程耦合在一起。该模型由两个四阶非线性PDE组成,它们在Galerkin框架中的直接有限元公式化要求至少具有整体C-1连续性的平滑基函数。使用IGA中的样条曲线基可以轻松满足的条件。我们在二维空间(其中囊泡是曲线)和三维区域(在囊泡是表面)中求解耦合方程。仿真结果与文献中的数值和实验结果吻合。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号