首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Shape optimisation with multiresolution subdivision surfaces and immersed finite elements
【24h】

Shape optimisation with multiresolution subdivision surfaces and immersed finite elements

机译:具有多分辨率细分曲面和浸入式有限元的形状优化

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a new optimisation technique that combines multiresolution subdivision surfaces for boundary description with immersed finite elements for the discretisation of the primal and adjoint problems of optimisation. Similar to wavelets, multiresolution surfaces represent the domain boundary using a coarse control mesh and a sequence of detail vectors. Based on the multiresolution decomposition efficient and fast algorithms are available for reconstructing control meshes of varying fineness. During shape optimisation the vertex coordinates of control meshes are updated using the computed shape gradient information. By virtue of the multiresolution editing semantics, updating the coarse control mesh vertex coordinates leads to large-scale geometry changes and, conversely, updating the fine control mesh coordinates leads to small-scale geometry changes. In our computations we start by optimising the coarsest control mesh and refine it each time the cost function reaches a minimum. This approach effectively prevents the appearance of non-physical boundary geometry oscillations and control mesh pathologies, like inverted elements. Independent of the fineness of the control mesh used for optimisation, on the immersed finite element grid the domain boundary is always represented with a relatively fine control mesh of fixed resolution. With the immersed finite element method there is no need to maintain an analysis suitable domain mesh. In some of the presented two and three-dimensional elasticity examples the topology derivative is used for introducing new holes inside the domain. The merging or removing of holes is not considered. (C) 2015 The Authors. Published by Elsevier B.V.
机译:我们开发了一种新的优化技术,该技术将用于边界描述的多分辨率细分表面与浸入式有限元相结合,以优化原始和伴随问题的离散化。与小波相似,多分辨率曲面使用粗糙的控制网格和一系列细节矢量来表示域边界。基于多分辨率分解,高效而快速的算法可用于重建不同精细度的控制网格。在形状优化期间,使用计算出的形状梯度信息更新控制网格的顶点坐标。借助于多分辨率编辑语义,更新粗略控制网格顶点坐标会导致大规模的几何形状更改,相反,更新细微控制网格顶点坐标会导致小尺寸几何形状更改。在我们的计算中,我们从优化最粗糙的控制网格开始,并在每次成本函数达到最小值时对其进行优化。这种方法有效地防止了非物理边界几何振动的出现,并防止了像倒置元素一样控制网格病理。与用于优化的控制网格的精细度无关,在浸入式有限元网格上,始终以固定分辨率的相对精细的控制网格来表示域边界。使用浸入式有限元方法,无需维护适合分析的域网格。在一些呈现的二维和三维弹性示例中,拓扑导数用于在域内部引入新的孔。不考虑合并或移除孔。 (C)2015作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号