首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions
【24h】

Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

机译:多项式分数阶微分方程的二阶数值方法:光滑和非光滑解

获取原文
获取原文并翻译 | 示例

摘要

Starting with the asymptotic expansion of the error equation of the shifted Grunwald-Letnikov formula, we derive a new modified weighted shifted Grunwald-Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions when the regularity of the solutions is known. We show theoretically and numerically that numerical solutions with good accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new WSGL formula leads to better performance compared to other known numerical approximations with similar resolution. (C) 2017 Elsevier B.V. All rights reserved.
机译:从移位的Grunwald-Letnikov公式的误差方程的渐近展开开始,我们通过引入适当的校正项来导出新的改进的加权移位的Grunwald-Letnikov(WSGL)公式。然后,我们使用一种经过修改的WSGL公式的特殊情况来求解多项式分数阶常微分方程和偏微分方程,并且当已知方程解的正则性时,我们证明了它们的线性稳定性和二阶收敛性。我们从理论和数值上证明,仅需很少的校正项就可以得到具有良好精度的数值解。而且,可以在不明确知道解析解的情况下,根据分数导数阶数调整校正项。数值模拟验证了理论结果,并证明了与其他具有类似分辨率的已知数值近似方法相比,新的WSGL公式具有更好的性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号