首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver
【24h】

Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver

机译:分数拉普拉斯算子的自适应有限元方法的方面:先验和后验误差估计,有效实现和多网格求解器

获取原文
获取原文并翻译 | 示例

摘要

We develop all of the components needed to construct an adaptive finite element code that can be used to approximate fractional partial differential equations, on non-trivial domains in d >= 1 dimensions. Our main approach consists of taking tools that have been shown to be effective for adaptive boundary element methods and, where necessary, modifying them so that they can be applied to the fractional PDE case. Improved a priori error estimates are derived for the case of quasi-uniform meshes which are seen to deliver sub-optimal rates of convergence owing to the presence of singularities. Attention is then turned to the development of an a posteriori error estimate and error indicators which are suitable for driving an adaptive refinement procedure. We assume that the resulting refined meshes are locally quasi-uniform and develop efficient methods for the assembly of the resulting linear algebraic systems and their solution using iterative methods, including the multigrid method. The storage of the dense matrices along with efficient techniques for computing the dense matrix-vector products needed for the iterative solution is also considered. The performance and efficiency of the resulting algorithm is illustrated for a variety of examples. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们开发了在d> = 1维的非平凡域上构造自适应有限元代码(可用于近似分数阶偏微分方程)所需的所有组件。我们的主要方法包括采用已证明对自适应边界元方法有效的工具,并在必要时对其进行修改,以便将其应用于分数PDE情况。对于准均匀网格的情况,得出了改进的先验误差估计,由于存在奇异点,网格被认为交付了次优的收敛速度。然后将注意力转向适合于驱动自适应细化过程的后验误差估计和误差指示符。我们假设生成的精炼网格是局部准均匀的,并使用迭代方法(包括多网格方法)开发了用于组装所得线性代数系统及其求解的有效方法。还考虑了稠密矩阵的存储以及用于计算迭代解所需的稠密矩阵向量乘积的有效技术。对于各种示例,说明了所得算法的性能和效率。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号