首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems
【24h】

A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems

机译:一种用于分析六面体主导有限元模型的新型多面体单元及其在非线性固体力学问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

A hexahedral-dominant finite element mesh can be easily constructed by cutting regular hexahedral elements in a simple block with CAD surfaces representing outer surfaces of a geometric model. Polyhedral elements with straight edges but possibly non-planar faces are generated at the domain boundaries, while regular hexahedral elements remain in the interior region. Shape functions for polyhedral elements are derived from moving least square approximation based on a tetrahedral subdivision of polyhedral domains by a centroid-based subdivision technique. The polyhedral shape functions in this study have similar properties to conventional finite element shape functions in terms of continuity and completeness within elements, compatibility across inter-element boundaries and the Kronecker-delta property. Furthermore, the present approach using hexahedral-dominant meshes with polyhedral elements at domain boundaries is successfully applied to solve large deformation problems of hyperelastic and elastic-plastic materials. (C) 2017 Elsevier B.V. All rights reserved.
机译:六面体为主导的有限元网格可以通过在一个简单的块中切割规则的六面体元素而轻松构建,其中CAD曲面代表几何模型的外表面。在区域边界处生成具有直边但可能非平面的多面体元素,而规则的六面体元素保留在内部区域中。多面体元素的形状函数是通过基于质心的细分技术,基于多面体域的四面体细分,通过移动最小二乘近似得出的。在本研究中,多面体形状函数在元素内的连续性和完整性,跨元素间边界的兼容性以及Kronecker-delta属性方面具有与常规有限元形状函数相似的属性。此外,使用在面边界处具有多面体单元的六面体主导网格的本方法成功地应用于解决超弹性和弹塑性材料的大变形问题。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号