首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Bayesian model selection using automatic relevance determination for nonlinear dynamical systems
【24h】

Bayesian model selection using automatic relevance determination for nonlinear dynamical systems

机译:非线性动力学系统基于自动相关性确定的贝叶斯模型选择

获取原文
获取原文并翻译 | 示例

摘要

Bayesian model selection is augmented with automatic relevance determination (ARD) to perform model reduction of complex dynamical systems modelled by nonlinear, stochastic ordinary differential equations (ODE). Given noisy measurement data, a parametrically flexible model is envisioned to represent the dynamical system. A Bayesian model selection problem is posed to find the best model nested under the envisioned model. This model selection problem is transferred from the model space to hyper-parameter space by regularizing the parameter posterior space through a parametrized prior distribution called the ARD prior. The resulting joint prior pdf is the combination of parametrized ARD priors assigned to parameters whose relevance to the system dynamics is questionable and the known prior pdf for parameters whose relevance is known a priori. The hyper-parameter of each ARD prior explicitly represents the relevance of the corresponding model parameter. The hyper-parameters are estimated using the measurement data by performing evidence maximization or type-II maximum likelihood. Superfluous model parameters are switched off during evidence maximization by the corresponding ARD prior, forcing the model parameter to be irrelevant for prediction purposes. An efficient numerical implementation for evidence computation using Markov Chain Monte Carlo sampling of the parameter posterior distribution is presented for the case when the analytical evaluation of evidence is not possible. The ARD approach is validated with synthetic measurements generated from a nonlinear, unsteady aeroelastic oscillator consisting of a NACA0012 airfoil undergoing limit cycle oscillation. A set of intentionally flexible stochastic ODEs having different state space formulation is proposed to model the synthetic data. ARD is used to obtain an optimal nested model corresponding to each proposed model. The optimal nested model with the maximum posterior model probability is chosen as the overall optimal model. ARD provides a flexible Bayesian platform to find the optimal nested model by eliminating the need to propose candidate nested models and its prior pdfs. (C) 2017 Elsevier B.V. All rights reserved.
机译:通过自动相关性确定(ARD)来增强贝叶斯模型选择,以执行复杂的动力学系统的模型约简,该系统通过非线性,随机常微分方程(ODE)建模。给定嘈杂的测量数据,可以设想一个参数灵活的模型来表示动态系统。提出了贝叶斯模型选择问题以找到嵌套在所设想的模型下的最佳模型。通过通过称为ARD Prior的参数化先验分布对参数后验空间进行正则化,可以将模型选择问题从模型空间转移到超参数空间。生成的联合先验pdf是分配给参数的ARD先验的组合,这些参数分配给与系统动力学的相关性值得怀疑的参数,与已知先验pdf的相关性是先验已知的参数。每个ARD先验的超参数明确表示相应模型参数的相关性。通过执行证据最大化或II型最大似然来使用测量数据估算超参数。在证据最大化期间,相应的ARD会关闭多余的模型参数,从而迫使模型参数与预测目的无关。针对无法对证据进行分析评估的情况,提出了使用参数后验分布的马尔可夫链蒙特卡洛采样进行证据计算的有效数值实现。 ARD方法通过非线性非稳态气动弹性振荡器产生的综合测量结果得到验证,该振荡器由经历极限循环振荡的NACA0012机翼组成。提出了一组具有不同状态空间公式的有意灵活的随机ODE,以对合成数据进行建模。 ARD用于获得与每个建议模型相对应的最佳嵌套模型。选择具有最大后验模型概率的最优嵌套模型作为整体最优模型。 ARD通过消除提出候选嵌套模型及其现有pdf的需求,提供了灵活的贝叶斯平台来查找最佳嵌套模型。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号