首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses
【24h】

Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses

机译:Oseen问题的增强混合有限元方法:先验和后验误差分析

获取原文
获取原文并翻译 | 示例

摘要

We propose a new augmented dual-mixed method for the Oseen problem based on the pseudostress velocity formulation. The stabilized formulation is obtained by adding to the dual-mixed approach suitable least squares terms that arise from the constitutive and equilibrium equations. We prove that for appropriate values of the stabilization parameters, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Cea estimate holds for any finite element subspaces. We also provide the rate of convergence when each row of the pseudostress is approximated by Raviart Thomas or Brezzi Douglas Marini elements and the velocity is approximated by continuous piecewise polynomials. Moreover, we derive a simple a posteriori error estimator of residual type that consists of two residual terms and prove that it is reliable and locally efficient. Finally, we include several numerical experiments that support the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
机译:基于拟应力速度公式,我们提出了一种新的Oseen问题的增强双重混合方法。通过将由本构方程和平衡方程产生的合适的最小二乘项添加到双混合方法中,可以得到稳定的配方。我们证明,对于稳定参数的适当值,新的变分公式和相应的Galerkin方案是正确的,并且对于任何有限元子空间,Cea估计均成立。当通过Raviart Thomas或Brezzi Douglas Marini元素逼近伪应力的每一行并且通过连续分段多项式逼近速度时,我们还提供了收敛速度。此外,我们推导了一个简单的残差类型的后验误差估计量,该估计量由两个残差项组成,并证明了该方法的可靠性和局部有效性。最后,我们包括一些支持理论结果的数值实验。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号