首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multi-fidelity optimization of super-cavitating hydrofoils
【24h】

Multi-fidelity optimization of super-cavitating hydrofoils

机译:超空化翼型的多保真度优化

获取原文
获取原文并翻译 | 示例

摘要

We present an effective multi-fidelity framework for shape optimization of super-cavitating hydrofoils using viscous solvers. We employ state-of-the-art machine learning tools such as multi-fidelity Gaussian process regression and Bayesian optimization to synthesize data obtained from multi-resolution simulations, and efficiently identify optimal configurations in the design space. We validate our simulation results against experimental data, and showcase the efficiency of the proposed work-flow in a realistic design problem involving the shape optimization of a three-dimensional super-cavitating hydrofoil parametrized by 17 design variables. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们提出了一种有效的多保真度框架,用于使用粘性求解器对超空化翼型进行形状优化。我们采用最先进的机器学习工具(例如多保真高斯过程回归和贝叶斯优化)来合成从多分辨率仿真中获得的数据,并有效地确定设计空间中的最佳配置。我们根据实验数据验证了仿真结果,并展示了在一个实际设计问题中所提出的工作流程的效率,该问题涉及通过17个设计变量参数化的三维超空化翼型的形状优化。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号