首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials
【24h】

Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials

机译:微结构材料数据库,用于弹塑性应变软化材料的自洽聚类分析

获取原文
获取原文并翻译 | 示例

摘要

AbstractMultiscale modeling of heterogeneous material undergoing strain softening poses computational challenges for localization of the microstructure, material instability in the macrostructure, and the computational requirement for accurate and efficient concurrent calculation. In the paper, a stable micro-damage homogenization algorithm is presented which removes the material instability issues in the microstructure with representative volume elements (RVE) that are not sensitive to size when computing the homogenized stress–strain response.The proposed concurrent simulation framework allows the computation of the macroscopic response to explicitly consider the behavior of the separate constituents (material phases), as well as the complex microstructural morphology. A non-local material length parameter is introduced in the macroscale model, which will control the width of the damage bands and prevent material instability.The self-consistent clustering analysis (SCA) recently proposed by Liu et al. [] provides an effective way of developing a microstructural database based on a clustering algorithm and the Lippmann–Schwinger integral equation, which enables an efficient and accurate prediction of nonlinear material response. The self-consistent clustering analysis is further generalized to consider complex loading paths through the projection of the effective stiffness tensor. In the concurrent simulation, the predicted macroscale strain localization is observed to be sensitive to the combination of microscale constituents, showing the unique capability of the SCA microstructural database for complex material simulations.
机译: 摘要 进行应变软化的异质材料的多尺度建模对微观结构的局部化,宏观结构中的材料不稳定性以及精确有效的并行计算的计算要求提出了计算挑战。本文提出了一种稳定的微损伤均质化算法,该算法消除了在计算均质应力-应变响应时具有代表性体积元素(RVE)对尺寸不敏感的微观结构中的材料不稳定性问题。 建议的并发模拟框架允许对宏观响应进行计算,以明确考虑各个成分(物质相)以及复合物的行为。微观结构形态。宏模型中引入了非局部材料长度参数,该参数将控制损伤带的宽度并防止材料不稳定。 Liu等人最近提出的自洽聚类分析(SCA)。 []提供了一种基于聚类算法和Lippmann-Schwinger积分方程的开发微结构数据库的有效方法,该方法可以高效,准确地预测非线性材料响应。自洽聚类分析被进一步推广到考虑通过有效刚度张量的投影的复杂载荷路径。在并行仿真中,观察到的预测宏应变本地化对微观成分的组合敏感,显示了SCA微结构数据库在复杂材料仿真中的独特功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号