首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces
【24h】

A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces

机译:二元精确,无条件的无条件能量稳定数值稳定数值,用于在任意弯曲表面上流动

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a second-order temporal and spatial accurate, unconditionally energy stable scheme for the binary fluid flows model on arbitrarily curved surfaces is proposed. We construct a novel surface discrete finite volume method for the surface computation with second-order spatial accuracy. The discretization can be obtained based on the surface mesh consisting of triangular grids. In order to obtain second order temporal accuracy, we apply a Crank-Nicolson-type method to the Cahn-Hilliard-Navier-Stokes system under the projection framework. The resulting system is solved by the Jacobi-type iteration method and bi-conjugate gradient stabilized method. The proposed scheme is proved to be unconditionally energy stable, which implies that a larger time step can be used. Additionally, our scheme has been proved to satisfy mass conservation property. Various numerical experiments are presented to demonstrate the efficiency and robustness of the proposed method. (C) 2021 Elsevier B.V. All rights reserved.
机译:在本文中,提出了一种二阶时间和空间准确,无条件地,用于任意弯曲表面上的二进制流体流动模型的无条件能量稳定方案。我们用二阶空间精度构造一种新的表面离散有限体积方法,其具有二阶空间精度。基于由三角形网格组成的表面网可以获得离散化。为了获得二阶时间准确性,我们将曲柄-Nicolson型方法应用于投影框架下的Cahn-Hilliard-Navier-Stokes系统。所得系统通过Jacobi型迭代法和双缀合物梯度稳定方法解决。证明所提出的方案是无条件的能量稳定,这意味着可以使用更大的时间步骤。此外,我们的计划已被证明满足大众保护财产。提出了各种数值实验以证明所提出的方法的效率和鲁棒性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号