首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An improved cell-based smoothed radial point interpolation method using condensed shape functions for 3D interior acoustic problems
【24h】

An improved cell-based smoothed radial point interpolation method using condensed shape functions for 3D interior acoustic problems

机译:一种改进的基于细胞的平滑径向点插值方法,用于3D内部声学问题的凝结形状

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of the finite element method (FEM) for interior acoustic problems deteriorates gradually as the wave number increases due to the "dispersion error". In essence, the "dispersion error" is caused by the "overly-stiff" property of a FE discrete model. To alleviate this problem in this study, a new type of virtual node selection scheme for the condensed shape functions is created first to soften the stiffness of a discrete model. Then, an improved cell-based smoothed radial point interpolation method (CS-RPIM-T5-Cd2) with the "close-to-exact-stiffness" property is developed based on the new selection scheme and the traditional method CS-RPIM-T5 Numerical examples, including a benchmark case and a practical engineering problem, have been studied, which demonstrates that the present method possesses better accuracy, efficiency, convergence, robustness, and error control performance than the FEM and the similar methods for interior acoustic problems. (C) 2021 ElsevierB.V. All rights reserved.
机译:随着波数随着“色散误差”而增加,有限元方法(FEM)的准确性逐渐逐渐恶化。从本质上讲,“分散误差”是由FE离散模型的“过硬”属性引起的。为了缓解本研究中的这个问题,首先创建一种用于冷凝形状函数的新型虚拟节点选择方案以软化离散模型的刚度。然后,基于新的选择方案和传统方法CS-RPIM-T5,开发出具有“近距离刚度”特性的改进的基于细胞的平滑径向点插值方法(CS-RPIM-T5-CD2),以及传统方法CS-RPIM-T5已经研究了数值示例,包括基准案例和实际工程问题,这表明本发明方法具有比FEM和内部声学问题的类似方法具有更好的准确性,效率,收敛,鲁棒性和误差控制性能。 (c)2021 elsevierb.v。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号