首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A reduced integration-based solid-shell finite element formulation for gradient-extended damage
【24h】

A reduced integration-based solid-shell finite element formulation for gradient-extended damage

机译:基于整合的整合固壳有限元配方,用于梯度延伸损伤

获取原文
获取原文并翻译 | 示例

摘要

The present contribution is concerned with the incorporation of gradient-extended damage into a reduced integration-based solid-shell finite element formulation. To this end, a purely mechanical low-order solid-shell element based on the isoparametric concept is combined with a gradient-extended two-surface damage plasticity model. Due to a tailored combination of the assumed natural strain (ANS) as well as the enhanced assumed strain (EAS) method, the most important locking phenomena are eliminated. A polynomial approximation of the kinematic as well as the constitutively dependent quantities within the weak forms enables the definition of a suitable hourglass stabilization. In this way, the element stiffness contributions coming from the hourglass stabilization can be determined analytically, since they represent polynomials with respect to Cartesian coordinates. Several numerical examples on elastic as well as elasto-plastic plates and shells under various loading scenarios show the ability of the present methodology to predict various degradation processes such as damage initiation, propagation, merging as well as branching. (C) 2021 Elsevier B.V. All rights reserved.
机译:本贡献涉及的梯度扩展损伤掺入减少基于积分 - 固体 - 壳有限元格式。为此,基于所述参概念纯机械低阶固体壳元件与梯度扩展的两表面损伤塑性模型相结合。由于的一个定制的组合假定以及增强的假定应变(EAS)的方法,最重要的锁定现象被消除自然应变(ANS)。运动学的弱形式内的多项式逼近以及组成型相关的量能够使合适的沙漏稳定的定义。以这种方式,从沙漏稳定来的元件的刚度的贡献可以被分析确定,因为它们代表了相对于笛卡尔坐标多项式。下各种负载情况下对弹性几个数值例子以及弹塑性板壳示出了本方法的预测的各种降解的能力处理诸如损伤引发,繁殖,合并以及支化。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号