首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals
【24h】

Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals

机译:通过离散化的完全去耦几何,在旋流器晶体的布诺浮子有限元分析中

获取原文
获取原文并翻译 | 示例

摘要

An immersed enriched finite element method is proposed for the analysis of phononic crystals (PnCs) with finite element (FE) meshes that are completely decoupled from geometry. Particularly, a technique is proposed to prescribe Bloch-Floquet periodic boundary conditions strongly on non-matching edges of the periodic unit cell (PUC). The enriched finite element formulation effectively transforms a periodic non-confirming discretization into an enriched node-to-node periodic discretizations where periodicity is enforced by any standard procedure. The enriched formulation is also used to describe the interior material interface. This completely eliminates the tedious process of generating matching or fitted meshes during the design process, as it allows changing the inclusion's geometry as well as the PnC's lattice type without changing the FE mesh. The proposed approach, which is used to analyze phononic crystals in 1-D, 2-D, and 3-D using structured meshes, exhibits the same performance as the standard finite element analysis on fitted meshes. (C) 2021 TheAuthor(s). Published by ElsevierB.V.
机译:提出了一种浸入的富集有限元方法,用于分析具有有限元(Fe)网格的声子晶体(PNC),其完全与几何形状分离。特别地,提出了一种技术,用于在周期性单元电池(PUC)的非匹配边缘上强烈地规定白斑周期边界条件。富集的有限元配方有效地将周期性的非确认离散化转换为富集的节点节点周期性离散化,其中通过任何标准过程强制执行周期性。富集的配方还用于描述内部材料界面。这完全消除了在设计过程中产生匹配或装配网格的繁琐过程,因为它允许改变包含的夹杂物的几何形状以及PNC的晶格类型而不改变FE网格。所提出的方法用于分析1-D,2-D和3-D中的声子晶体,使用结构网格表现出与拟合网格上的标准有限元分析相同的性能。 (c)2021 TheAuthor。由elsevierb.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号