首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Topology optimization of sandwich structures with solid-porous hybrid infill under geometric constraints
【24h】

Topology optimization of sandwich structures with solid-porous hybrid infill under geometric constraints

机译:几何约束下具有固有多孔杂交填充的夹层结构的拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

Topology optimization of sandwich structures is attracting more interests due to its potential to balance mechanical performances and lightweight level, especially with the increasing application of additive manufacturing. This paper presents a topology optimization method to generate sandwich structures with solid-porous hybrid infill, in which this design feature of hybrid infill will improve the structural performance such as stiffness-to-weight ratio and strength-to-weight ratio, compared to designs with pure porous infill. Two design variable fields are introduced to describe the fundamental topology, in which one used to determine corresponding shell and infill domain through two-step density filtering under the SIMP framework, while another for assigning each solid-type or porous-type material into the infill domain. A projection-based geometric constraint method is developed to restrict the maximum size of solid infill, leading to solid infill distributed at the expected regions for manufacturing concerns. Furthermore, compliance-minimization topology design problem under mass constraints of solid and porous materials is formulated and solved with MMA in combination with the derived sensitivities. Three numerical examples are systematically investigated to demonstrate the effectiveness of the proposed method. (C) 2021 Elsevier B.V. All rights reserved.
机译:拓扑优化夹层结构由于其平衡机械性能和轻质水平的潜力而吸引了更多的兴趣,特别是随着添加剂制造的越来越多的应用。本文介绍了用固体多孔杂交填充生成夹层结构的拓扑优化方法,其中杂交填充的这种设计特征将改善与设计相比改善结构性能,例如刚度 - 重量比和强度重量比。纯多孔填充。引入了两个设计变量字段来描述基本拓扑,其中用于通过SIMP框架下的两步密度过滤确定相应的外壳和填充域,而另一个用于将每个固体类型或多孔型材料分配给填充物领域。开发了一种基于突出的几何约束方法,以限制固体填充的最大尺寸,导致在预期地区分布的固体填充物以进行制造问题。此外,配制和解在固体和多孔材料的质量约束下的顺应性 - 最小化拓扑设计问题,并用MMA与衍生的敏感性组合解决。系统地研究了三个数值例子以证明所提出的方法的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号