首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Generalized multiscale approximation of a mixed finite element method with velocity elimination for Darcy flow in fractured porous media
【24h】

Generalized multiscale approximation of a mixed finite element method with velocity elimination for Darcy flow in fractured porous media

机译:裂缝多孔介质中达西流动速度消除混合有限元法的广义多尺度近似

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a multiscale method for solving the Darcy flow of a single-phase fluid in two-dimensional fractured porous media. We consider a discrete fracture-matrix (DFM) model that treats fractures as one-dimensional objects, and flows in both the matrix and fractures respect the Darcy's law. A multipoint flux mixed finite element (MFMFE) method with the broken 1 Raviart-Thomas (RT2) element and the trapezoidal quadrature rule is employed to approximate the matrix velocity and pressure, which results in a block diagonal, symmetric and positive definite mass matrix for the matrix velocity on general quadrilateral grids; the one-dimensional RT0 mixed finite element method with the one-dimensional trapezoidal quadrature rule is exploited to approximate the fracture velocity and pressure, which leads to a diagonal and positive definite mass matrix for the fracture velocity in each single fracture. All these features of the obtained mass matrices allow for velocity elimination. Multiscale basis functions are constructed for the two-dimensional matrix pressure following the generalized multiscale finite element method (GMsFEM) framework to capture the fine-scale information of heterogeneous fractured porous media and effectively reduce the degrees of freedom for the matrix pressure, while fine-grid basis functions are utilized for the one-dimensional fracture pressure in fractures. Various numerical tests with the oversampling technique for different fracture distributions are performed to show that the proposed multiscale method is effective and able to provide good approximations for the fine-grid solution. (C) 2021 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种多尺度方法,用于在二维裂缝多孔介质中求解单相流体的达西流动。我们考虑一种离散的骨折 - 矩阵(DFM)模型,其将骨折作为一维物体,并在矩阵和裂缝中流动尊重达西的法律。采用破碎的1个Rawiart-Thomas(RT2)元件和梯形正交规则的多点焊剂混合有限元(MFMFFE)方法来近似矩阵速度和压力,这导致块对角线,对称和正的质量矩阵通用四边形网格上的矩阵速度;利用一维梯形正交规律的一维RT0混合有限元方法近似断裂速度和压力,这导致对角线和正定质量基质,用于每个裂缝中的断裂速度。所获得的质量基质的所有这些特征允许速度消除。多尺度基函数构造为推广多尺度有限元方法(GMSFEM)框架之后的二维矩阵压力,以捕获异质断裂多孔介质的微量尺度信息,并有效地降低了基质压力的自由度,而微量 - 网格基函数用于裂缝中的一维裂缝压力。进行针对不同裂缝分布的过采样技术的各种数值测试以表明所提出的多尺度方法是有效的,并且能够为细网解决方案提供良好的近似。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2021年第1期|113846.1-113846.24|共24页
  • 作者单位

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China;

    Xiamen Univ Sch Math Sci Xiamen 361005 Fujian Peoples R China|Xiamen Univ Fujian Prov Key Lab Math Modeling & High Performa Xiamen 361005 Fujian Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China|Xian Jiaotong Liverpool Univ Sch Sci Dept Appl Math Suzhou 215123 Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China|Univ Calgary Dept Chem & Petr Engn Schulich Sch Engn 2500 Univ Dr NW Calgary AB T2N 1N4 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Darcy flow; Fractured porous media; DFM models; MFMFE methods; Multiscale methods; Mixed GMsFEM;

    机译:达西流动;裂缝多孔介质;DFM型号;MFMFE方法;多尺度方法;混合GMSFEM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号