首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stochastic preconditioning of domain decomposition methods for elliptic equations with random coefficients
【24h】

Stochastic preconditioning of domain decomposition methods for elliptic equations with random coefficients

机译:随机系数的椭圆方程的域分解方法的随机预处理

获取原文
获取原文并翻译 | 示例

摘要

This paper aims at developing an efficient preconditioned iterative domain decomposition (DD) method for the sampling of linear stochastic elliptic equations. To this end, we consider a non-overlapping DD method resulting in a Symmetric Positive Definite (SPD) Schur system for almost every sampled problem. To accelerate the iterative solution of the Schur system, we propose a new stochastic preconditioning strategy that produces a preconditioner adapted to each sampled problem and converges toward the ideal preconditioner (i.e., the Schur operator itself) when the numerical parameters increase. The construction of the stochastic preconditioner is trivially parallel and takes place in an off-line stage, while the evaluation of the sample's preconditioner during the sampling stage has a low and fixed cost. One key feature of the proposed construction is a factorized form combined with Polynomial Chaos expansions of local operators. The factorized form guarantees the SPD character of the sampled preconditioners while the local character of the PC expansions ensures a low computational complexity. The stochastic preconditioner is tested on a model problem in 2 space dimensions. In these tests, the preconditioner is very robust and significantly more efficient than the deterministic median-based preconditioner, requiring, on average, up to 7 times fewer iterations to converge. Complexity analysis suggests the scalability of the preconditioner with the number of subdomains. (C) 2021 Elsevier B.V. All rights reserved.
机译:本文旨在开发用于采样线性随机椭圆方程的采样的高效预处理域分解(DD)方法。为此,我们考虑一个非重叠的DD方法,导致对称正定(SPD)SCUR系统,几乎所有采样问题。为了加速Schur系统的迭代解决方案,我们提出了一种新的随机预处理策略,该策略产生适应每个采样问题的预处理器,并在数值参数增加时朝向理想的预处理器(即Schur算子本身)收敛。随机预处理器的构造史上平行并在离线阶段进行,而在采样阶段期间对样品的预处理器的评估具有低且固定的成本。所提出的构造的一个关键特征是与局部运营商的多项式混沌扩展结合的分解形式。分解形式保证采样的预处理器的SPD字符,而PC扩展的本地特征可确保低计算复杂性。随机预处理器在2个空间尺寸中测试了模型问题。在这些测试中,预处理器比基于确定的中位数的预处理器更稳健,更效率,平均需要较少的迭代率较少7倍。复杂性分析表明预处理器具有子域数的可扩展性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号