首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A gauge-fixing procedure for spherical fluid membranes and application to computations
【24h】

A gauge-fixing procedure for spherical fluid membranes and application to computations

机译:球形液体膜的规定 - 固定程序和计算的应用

获取原文
获取原文并翻译 | 示例

摘要

A distinguishing feature of lipid (bilayer) membranes is their in-plane fluidity caused by free-flowing lipid molecules on the membrane surface. In continuum models for lipid membranes (e.g., the Helfrich-Canham model), fluidity manifests as invariance of the free energy to change in parametrization of the reference surface; a property termed reparametrization invariance. Two different parametric equations of the surface, related through a reparametrization, have identical equilibrium and stability properties. They can therefore be considered equivalent representations of the same surface. Since there are infinitely many ways to parametrize a surface, there are infinitely many equivalent representations for the surface. This highly redundant representation for a surface poses significant challenges to computations. For example, in computational studies using finite element analysis, extreme mesh distortion and spurious zero-energy modes are reported (Feng and Klug, 2006; Ma and Klug, 2008). In this work, by viewing reparametrization invariance as a form of gauge symmetry, we propose a gauge-fixing procedure for the case of topologically spherical membranes. We show that this procedure breaks gauge symmetry and tames the extreme redundancy of the system. We also demonstrate that this procedure is suitable for efficient numerical computations. We obtain accurate equilibrium configurations for the Helfrich-Canham model while circumventing computational issues noted above. (C) 2021 Elsevier B.V. All rights reserved.
机译:脂质(双层)膜的显着特征是它们在膜表面上的自由流动的脂质分子引起的平面内流动性。在脂膜的连续模型中(例如,Helfrich-Canham模型),流动性表现为自由能量的不变性,以改变参考表面的参数化;属性称为Reparametization Invariance。表面的两种不同的参数方程,通过重新制备,具有相同的平衡和稳定性。因此,它们可以被视为相同表面的等同表示。由于具有多种方法参加表面的方法,因此表面具有无限的等效表示。表面的这种高度冗余表示对计算产生了重大挑战。例如,在使用有限元分析的计算研究中,报告了极端网格失真和杂散的零能量模式(Feng和Klug,2006; Ma和Klug,2008)。在这项工作中,通过观察Reparametive Invariance作为一种表对称性的形式,我们提出了一种用于拓扑球形膜的情况的规范方法。我们表明,此过程中断了仪表对称性并驯服了系统的极端冗余。我们还证明了该过程适用于有效的数值计算。我们获得了Helfrich-Canham模型的准确平衡配置,同时避免了上述计算问题。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号