首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations
【24h】

An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations

机译:用于压缩Navier-Stokes方程的高效二阶All Mach有限音量求解器

获取原文
获取原文并翻译 | 示例

摘要

In the numerical simulation of fluid dynamic problems there are situations in which acoustic waves are very fast compared to the average velocity of the fluid and conversely situations in which the fluid moves at high speed and shock waves may be present. Ideally, a numerical method should be able to treat these different regimes without strong limitations in terms of time step and without excessive related computational cost. Unfortunately, standard explicit in time schemes often adopted for hyperbolic problems are not suitable for these problems, hence remedies have to be studied. To this aim, the results presented in this article concern the development of a second order in time and space numerical method for the compressible Navier-Stokes equation which works for both high and low Mach numbers. In particular, when the Mach number goes to zero, one recovers a numerical method for the limit Navier-Stokes system which under some additional hypothesis degenerates to the incompressible Navier-Stokes equations, while in the case of high Mach numbers the method exhibits a shock capturing structure. The idea is based on partitioning the equations into a fast and a slow scale and by taking implicit the fast scale dynamic together with the viscous terms. The resulting numerical scheme is stable for time steps which are independent both from the speed of the pressure waves and from the diffusive terms characterizing the viscous forces and the heat flux. The only time step limitation is induced by the average speed of the flow. The work here presented extends the seminal ideas developed in Dimarco et al. (2017, 2018) for isentropic Euler equations and in Boscheri et al. (2020) for the full set of compressible Euler equations to the multidimensional Navier-Stokes system and permits efficient three dimensional simulations of all Mach problems. The discretization is constructed on Cartesian meshes and the method is second order accurate in space and time. Numerical results show the accuracy, the robustness and the effectiveness of the new proposed approach. (C) 2020 Elsevier B.V. All rights reserved.
机译:在流体动力学问题的数值模拟中,有些情况,其中与流体的平均速度相比,声波非常快,并且相反的情况下,可以存在流体在高速和冲击波处移动。理想地,数值方法应该能够在时间步长而不有强局限性而没有过多的相关计算成本的情况下进行这些不同的制度。不幸的是,标准在正弦问题中通常采用的时间表不适合这些问题,因此必须研究补救措施。为此目的,本文介绍的结果涉及为高压和低马赫数工作的可压缩Navier-Stokes等式的时间和空间数值方法的开发。特别地,当马赫数变为零时,一个用于限制Navier-Stokes系统的数值方法,该方法在一些附加的假设下退化到不可压缩的Navier-Stokes方程,而在高马赫数的情况下,该方法呈现冲击捕获结构。该想法基于将方程分配成快速和慢速等级,并且通过与粘性术语一起采用自由度动态。由此产生的数值方案对于从压力波的速度和表征粘性力和热通量的扩散术语无关的时间步骤是稳定的。唯一的时间步长由流量的平均速度引起。这里的工作展示了在Dimarco等人中开发的开创性想法扩展。 (2017,2018)对于等式欧拉方程和Boscheri等。 (2020)对于全套可压缩的欧拉方程,对多维纳维尔 - 斯托克斯系统进行了高效的三维模拟所有马赫问题。在笛卡尔网格上构建了离散化,该方法是空间和时间准确的二阶准确。数值结果表明了新建议方法的准确性,鲁棒性和有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号