首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement
【24h】

Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement

机译:用于计算规范的有限元程序和三角形表面上的平均曲率及其用于网眼细化的用途

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider finite element approaches to computing the mean curvature vector and normal at the vertices of piecewise linear triangulated surfaces. In particular, we adopt a stabilization technique which allows for first order L-2-convergence of the mean curvature vector and apply this stabilization technique also to the computation of continuous, recovered, normals using L-2-projections of the piecewise constant face normals. Finally, we use our projected normals to define an adaptive mesh refinement approach to geometry resolution where we also employ spline techniques to reconstruct the surface before refinement. We compare our results to previously proposed approaches. (c) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑在分段线性三角形表面的顶点上计算平均曲率矢量和正常的有限元方法。特别地,我们采用一种稳定技术,其允许平均曲率矢量的第一阶L-2收敛,并使用分段恒定面正常的L-2-投影来计算连续,恢复的正常的计算。最后,我们使用预计的法线​​来定义自适应网格细化方法,以便我们还使用样条技术来重建细化前的表面。我们将结果与先前提出的方法进行比较。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号