首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems
【24h】

A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems

机译:具有Kaufman型排出问题的三维各向异性浸没有限元的全解耦迭代方法

获取原文
获取原文并翻译 | 示例

摘要

In order to simulate the Kaufman-type discharge problems, a fully decoupled iterative method with anisotropic immersed finite elements on Cartesian meshes is proposed, especially for a three-dimensional (3D) non-axisymmetric anisotropic hybrid model which is more difficult than the axisymmetric or isotropic models. The classical hybrid model, which describes the important plasma distribution of the Kaufman-type discharge problems, couples several difficult equations together to form a large scale system. The 3D non-axisymmetric and anisotropic properties will further increase the complexity of this system. Hence it generally needs to be solved in the decoupled way for significantly reducing the computational cost. Based on the Particle-in-Cell Monte Carlo collision (PIC-MCC) method and the immersed finite element (IFE) method, we propose a fully decoupled iterative method for solving this complex system. The IFE method allows Cartesian meshes for general interface problems, while the traditional finite element methods require body-fitting meshes which are often unstructured. Compared with traditional finite element methods, this feature significantly improves the efficiency of the proposed 3D fully decoupled iterative method, while maintaining the optimal accuracy of the chosen finite elements. Numerical simulations of traditional Kaufman ion thruster and annular ion thruster discharge chambers are provided and compared with the corresponding lab experiment results to illustrate the features of the proposed method. (C) 2020 Elsevier B.V. All rights reserved.
机译:为了模拟Kaufman型放电问题,提出了一种在笛卡尔网格上具有各向异性浸没有限元的完全去耦的迭代方法,特别是对于三维(3D)非轴对称各向异性混合模型,其比轴对称更困难或各向同性模型。古典混合模型,其描述了考夫曼型排出问题的重要等离子体分布,将若干困难方程组合在一起以形成大规模系统。 3D非轴对称和各向异性特性将进一步提高该系统的复杂性。因此,它通常需要以分离方式解决,以便显着降低计算成本。基于粒子内蒙特卡罗碰撞(PIC-MCC)方法和浸没的有限元(IFE)方法,我们提出了一种解决该复杂系统的完全解耦的迭代方法。 IFE方法允许笛卡尔网格用于通用接口问题,而传统的有限元方法需要通常非结构化的身体拟合网格。与传统的有限元方法相比,该特征显着提高了所提出的3D完全解耦迭代方法的效率,同时保持所选择的有限元的最佳精度。提供了传统的Kaufman离子推进器和环形离子推进器放电室的数值模拟,与相应的实验室实验结果进行了比较,以说明所提出的方法的特征。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号