首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A novel time-dependent system constraint boundary sampling technique for solving time-dependent reliability-based design optimization problems
【24h】

A novel time-dependent system constraint boundary sampling technique for solving time-dependent reliability-based design optimization problems

机译:一种新的时间依赖性系统约束边界采样技术,用于解决时间依赖性可靠性的设计优化问题

获取原文
获取原文并翻译 | 示例

摘要

Solving the time-dependent reliability-based design optimization (TRBDO) problems is quite cost-consuming in realistic engineering application. Surrogate model-based TRBDO methods can provide a good tradeoff between accuracy and efficiency of the solution. However, the existing surrogate model-based TRBDO methods pay efforts on enhancing surrogate models of constraint functions in both feasible region and infeasible region. While only the estimation accuracy of boundaries between feasible region and infeasible one has large effects on the calculation accuracy of design parameter, and the estimation accuracy of limit state surfaces of constraint functions in infeasible region has little effects on the calculation accuracy of design parameter. Therefore, it is no major demand to deliberately enhance the accuracy of surrogate models of constraint functions in the infeasible region, and the existing surrogate model-based TRBDO methods introduce extra computational cost. In this paper, a new surrogate model-based method called time-dependent system constraint boundary sampling (TSCBS) is proposed to overcome the limitation of existing surrogate model-based TRBDO methods. By employing the TSCBS, samples around the boundaries between feasible region and infeasible one are selected, and samples in the infeasible region far away from the boundaries are avoided as much as possible, to improve the surrogate models of constraint functions. Furthermore, in order to obtain the feasible region of the TRBDO, the safe region of each probabilistic constraint is to be sure first with an established adaptive coefficient. The adaptive coefficient can provide a good tradeoff between the input dimension and iteration. Numerical and engineering examples show that the proposed TSCBS generally performs higher computational efficiency than existing surrogate model-based TRBDO methods. (c) 2020 Elsevier B.V. All rights reserved.
机译:解决基于时间的可靠性的设计优化(TRBDO)问题在现实工程应用中非常成本。基于代理模型的TBDO方法可以在解决方案的准确性和效率之间提供良好的权衡。然而,现有的代理模型的TRBDO方法努力在可行区域和不可行区域中加强约束函数的替代模型。虽然只有可行区域与不可行的边界的估计准确性对设计参数的计算精度具有很大的影响,但是在不可行区域中的限制功能的限制状态表面的估计精度对设计参数的计算精度影响不大。因此,没有重大要求刻意增强不可行区域中的约束函数模型的准确性,并且现有的基于代理模型的TRBDO方法引入额外的计算成本。本文提出了一种称为时间依赖系统约束边界采样(TSCB)的新的基于代理模型的方法,以克服对现有的基于代理模型的TRBDO方法的限制。通过采用TSCB,选择可行区域之间的边界和不可行的样品,并且尽可能地避免了远离边界的不可行区域中的样品,以改善约束函数的代理模型。此外,为了获得TRBDO的可行区域,每个概率约束的安全区域是首先以建立的自适应系数确定。自适应系数可以在输入维度和迭代之间提供良好的权衡。数值和工程示例表明,所提出的TSCB通常比现有的基于代理模型的TRBDO方法执行更高的计算效率。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号