...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures
【24h】

Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures

机译:机器学习材料物理学:多分辨率神经网络学习演出微观结构的自由能和非线性弹性响应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many important multi-component crystalline solids undergo mechanochemical spinodal decomposition: a phase transformation in which the compositional redistribution is coupled with structural changes of the crystal, resulting in dynamically evolving microstructures. The ability to rapidly compute the macroscopic behavior based on these detailed microstructures is of paramount importance for accelerating material discovery and design. Here, our focus is on the macroscopic, nonlinear elastic response of materials harboring microstructure. Because of the diversity of microstructural patterns that can form, there is interest in taking a purely computational approach to predicting their macroscopic response. However, the evaluation of macroscopic, nonlinear elastic properties purely based on direct numerical simulations (DNS) is computationally very expensive, and hence impractical for material design when a large number of microstructures need to be tested. A further complexity of a hierarchical nature arises if the elastic free energy and its variation with strain is a small-scale fluctuation on the dominant trajectory of the total free energy driven by microstructural dynamics. To address these challenges, we present a data driven approach, which combines advanced neural network (NN) models with DNS to predict the homogenized, macroscopic, mechanical free energy and stress fields arising in a family of multi-component crystalline solids that develop microstructure. The microstructures are numerically generated by solving a coupled, mechanochemical spinodal decomposition problem governed by nonlinear strain gradient elasticity and the Cahn-Hilliard phase field equation. The hierarchical structure of the free energy's evolution induces a multi-resolution character to the machine learning paradigm: We construct knowledge-based neural networks (KBNNs) with either pre-trained fully connected deep neural networks (DNNs), or pre-trained convolutional neural networks (CNNs) that describe the dominant characteristic of the data to fully represent the hierarchically evolving free energy. We demonstrate multi-resolution learning of the materials physics; specifically of the nonlinear elastic response for both fixed and evolving microstructures. (c) 2020 Elsevier B.V. All rights reserved.
机译:许多重要的多组分结晶固体经过机械化学旋转性分解:其中组合物再分配的相变与晶体的结构变化耦合,导致动态演化的微观结构。快速计算基于这些细节的宏观行为的能力对于加速材料发现和设计至关重要。在这里,我们的重点是含有微观结构的材料的宏观,非线性弹性响应。由于可以形成的微观结构模式的多样性,有兴趣采用纯粹计算方法来预测其宏观反应。然而,基于直接数值模拟(DNS)纯粹基于直接数值模拟(DNS)的评估是计算非常昂贵的,因此当需要测试大量微观结构时,材料设计是不切实际的。如果弹性自由能量及其对应变的变化是由微观结构动态驱动的总自由能的显性轨迹的小规模波动,则出现了分层性质的进一步复杂性。为了解决这些挑战,我们提出了一种数据驱动方法,它将高级神经网络(NN)模型与DNS相结合,以预测在制育微观结构的多组分结晶固体系列中产生的均质,宏观,机械自由能和应力场。通过求解由非线性应变梯度弹性和CAHN-HALLIARD相场方程来控制的耦合的机械化学纯硅膜分解问题来数量地产生数值。自由能量的进化的层次结构引起了机器学习范式的多分辨率字符:我们用预先训练的完全连接的深神经网络(DNN)构建基于知识的神经网络(KBNN),或预先训练的卷积神经网络网络(CNNS)描述数据的主导特性以完全代表层级不断发展的自由能。我们展示了材料物理的多分辨率学习;具体地,用于固定和不断发展的微结构的非线性弹性响应。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号