首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions
【24h】

Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions

机译:机器学习材料物理:可集体深神经网络通过学习自由能源功能实现缩放桥接

获取原文
获取原文并翻译 | 示例

摘要

The free energy of a system is central to many material models. Although free energy data is not generally found directly, its derivatives can be observed or calculated. In this work, we present an Integrable Deep Neural Network (IDNN) that can be trained to derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover an accurate representation of the free energy. The IDNN is demonstrated by training to the chemical potential data of a binary alloy with B2 ordering. The resulting DNN representation of the free energy is used in a mesoscopic, phase field simulation and found to predict the appropriate formation of antiphase boundaries in the material. In contrast, a B-spline representation of the same data failed to resolve the physics of the system with sufficient fidelity to resolve the antiphase boundaries. Since the fine scale physics harbors complexity that emerges through the free energy in coarser-grained descriptions, the IDNN represents a framework for scale bridging in materials systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:系统的自由能是许多材料模型的核心。尽管通常不直接发现自由能数据,但可以观察或计算其衍生物。在这项工作中,我们介绍了一种可集成的深神经网络(IDNN),可以接受从原子尺度模型和统计力学获得的衍生数据,然后分析地集成以恢复自由能的准确表示。通过培训与B2订购的二元合金的化学势数据训练来证明IDNN。可自由能的所得DNN表示用于介性,相场模拟,发现预测材料中的适当形成抗血液缩放。相反,相同数据的B样条表示未能解决系统的物理,以具有足够的保真度来解决反相界限。由于精细尺度物理学的复杂性通过粗糙化的描述中的自由能量出现,因此IDNN表示材料系统中桥接的框架。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号