首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions
【24h】

Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions

机译:机器学习材料物理学:可集成的深度神经网络通过学习自由能函数实现尺度桥接

获取原文
获取原文并翻译 | 示例

摘要

The free energy of a system is central to many material models. Although free energy data is not generally found directly, its derivatives can be observed or calculated. In this work, we present an Integrable Deep Neural Network (IDNN) that can be trained to derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover an accurate representation of the free energy. The IDNN is demonstrated by training to the chemical potential data of a binary alloy with B2 ordering. The resulting DNN representation of the free energy is used in a mesoscopic, phase field simulation and found to predict the appropriate formation of antiphase boundaries in the material. In contrast, a B-spline representation of the same data failed to resolve the physics of the system with sufficient fidelity to resolve the antiphase boundaries. Since the fine scale physics harbors complexity that emerges through the free energy in coarser-grained descriptions, the IDNN represents a framework for scale bridging in materials systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:系统的自由能是许多材料模型的核心。尽管通常无法直接找到自由能数据,但可以观察或计算其导数。在这项工作中,我们提出了一个可集成的深度神经网络(IDNN),可以对其进行训练,以衍生自原子尺度模型和统计力学获得的数据,然后进行分析集成以恢复自由能的精确表示。通过对具有B2有序性的二元合金的化学势数据进行训练来证明IDNN。所得的自由能的DNN表示用于介观的相场模拟中,并发现其可预测材料中反相边界的适当形成。相反,相同数据的B样条表示无法以足够的保真度来解析系统边界来解决系统的物理问题。由于精细尺度物理具有在粗粒度描述中通过自由能出现的复杂性,因此IDNN代表了材料系统中尺度桥接的框架。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号