首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An implicit G~1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff-Love shell assemblies
【24h】

An implicit G~1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff-Love shell assemblies

机译:用于分析光滑和折叠的Kirchhoff-Love壳组件的隐式G〜1合适的双立方插值

获取原文
获取原文并翻译 | 示例

摘要

A quadrilateral bi-cubic G(1)-conforming finite element for the analysis of Kirchhoff-Love shell assemblies based on the rational Gregory interpolation is presented. The Gregory interpolation removes the symmetry of the second cross derivative at the corners of the element that allows an independent control of the side rotations of the boundaries of the element. In this way G(1)-conformity of the deformation can be implicitly obtained for any mesh of quadrilateral elements, also for not G(1)-continuous parametrizations. The interpolation is defined by means of the kinematics of the boundary ribbons. The ribbon is the differential set generated by the tangents at the boundary of the element. A new set of degrees of freedom is introduced in order to control the deformation of the boundary, and the non-linear map between this new set of degrees of freedom and the control points of the Gregory interpolation is derived. Due to the presence of rational terms, the interpolation is not consistent, so that, in order to recover consistency it is necessary to enforce the vanishing of the discontinuities of the second derivatives with additional constraints. The proposed G(1)-conforming shell element results accurate and robust as shown by several numerical investigations on benchmark problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:介绍了基于Rational Gregory插值的基于Rational Gregory插值的Kirchhoff-Love Shell组件的分析有限元的四边形双立方G(1)。格雷格插值去除在元件的角落处的第二交叉导数的对称性,其允许独立控制元件边界的侧向旋转。以这种方式,对于任何四边形元素的网状物,也可以隐式获得变形的G(1) - 对于不是G(1) - 连续参数化,可以隐含变形。插值通过边界带的运动学来定义。色带是由元素边界处的切线产生的差分集。引入了一种新的自由度,以控制边界的变形,并且导出了这组新的自由度和格雷戈内插值的控制点之间的非线性图。由于存在理性的术语,内插不是一致的,因此,为了恢复一致性,有必要强制实施第二衍生物的不连续性与额外的约束。所提出的G(1) - 壳元件,结果是准确且坚固,如几个数值研究所示的基准问题所示。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号