首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A general two-phase Markov chain Monte Carlo approach for constrained design optimization: Application to stochastic structural optimization
【24h】

A general two-phase Markov chain Monte Carlo approach for constrained design optimization: Application to stochastic structural optimization

机译:一般的两相马尔可夫链蒙特卡罗接近约束设计优化:随机结构优化的应用

获取原文
获取原文并翻译 | 示例

摘要

This contribution presents a general approach for solving structural design problems formulated as a class of nonlinear constrained optimization problems. A Two-Phase approach based on Bayesian model updating is considered for obtaining the optimal designs. Phase I generates samples (designs) uniformly distributed over the feasible design space, while Phase II obtains a set of designs lying in the vicinity of the optimal solution set. The equivalent model updating problem is solved by the transitional Markov chain Monte Carlo method. The proposed constraint-handling approach is direct and does not require special constraint-handling techniques. The population-based stochastic optimization algorithm generates a set of nearly optimal solutions uniformly distributed over the vicinity of the optimal solution set. The set of optimal solutions provides valuable sensitivity information. In addition, the proposed scheme is a useful tool for exploration of complex feasible design spaces. The general approach is applied to an important class of problems. Specifically, reliability-based design optimization of structural dynamical systems under stochastic excitation. Numerical examples are presented to evaluate the effectiveness of the proposed design scheme. (C) 2020 Elsevier B.V. All rights reserved.
机译:该贡献呈现了一种求解作为一类非线性约束优化问题的结构设计问题的一般方法。基于贝叶斯模型更新的两相方法被认为是为了获得最佳设计。 I阶段产生均匀分布在可行的设计空间上的样品(设计),而II阶段获得符合最佳解决方案集附近的一组设计。同等模型更新问题由过渡马尔可夫链蒙特卡罗方法解决。所提出的约束处理方法是直接的,不需要特殊的限制处理技术。基于人口的随机优化算法产生一组近似最佳的解决方案,均匀分布在最佳解决方案集附近。该集合最佳解决方案提供了有价值的敏感性信息。此外,拟议的计划是探索复杂可行的设计空间的有用工具。一般方法适用于重要的问题。具体而言,随机激励下结构动态系统的基于可靠性的设计优化。提出了数值例子以评估所提出的设计方案的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2021年第1期|113487.1-113487.27|共27页
  • 作者

    Jensen H.; Jerez D.; Beer M.;

  • 作者单位

    Univ Tecn Federico Santa Maria Dept Civil Engn Valparaiso Chile|Tongji Univ Int Joint Res Ctr Engn Reliabil & Stochast Mech Shanghai 200092 Peoples R China;

    Leibniz Univ Hannover Inst Risk & Reliabil D-30167 Hannover Germany;

    Leibniz Univ Hannover Inst Risk & Reliabil D-30167 Hannover Germany|Tongji Univ Int Joint Res Ctr Engn Reliabil & Stochast Mech Shanghai 200092 Peoples R China|Univ Liverpool Inst Risk & Uncertainty Liverpool L69 7ZF Merseyside England|Univ Liverpool Sch Engn Liverpool L69 7ZF Merseyside England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Constrained optimization; Feasible design space; Meta-models; Markov sampling method; Reliability-based design; Stochastic optimization;

    机译:受限优化;可行的设计空间;元模型;马尔可夫采样方法;基于可靠性的设计;随机优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号