首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coupling Arbogast-Correa and Bernardi-Raugel elements to resolve coupled Stokes-Darcy flow problems
【24h】

Coupling Arbogast-Correa and Bernardi-Raugel elements to resolve coupled Stokes-Darcy flow problems

机译:耦合Arbogast-Correa和Bernardi-Raugel元素来解决耦合的Stokes-Darcy流程问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a finite element method for solving coupled Stokes-Darcy flow problems by combining the classical Bernardi-Raugel finite elements and the recently developed Arbogast-Correa (AC) spaces on quadrilateral meshes. The novel weak Galerkin methodology is employed for discretization of the Darcy equation. Specifically, piecewise constant approximants separately defined in element interiors and on edges are utilized to approximate the Darcy pressure. The discrete weak gradients of these shape functions and the numerical Darcy velocity are established in the lowest order AC space. The Bernardi-Raugel elements (B R-1, Q(0)) are used to discretize the Stokes equations. These two types of discretizations are combined at an interface, where kinematic, normal stress, and the Beavers-Joseph-Saffman (BJS) conditions are applied. Rigorous error analysis along with numerical experiments demonstrate that the method is stable and has optimal-order accuracy. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一种有限元方法,用于通过组合古典Bernardi-Raugel有限元件和最近开发的四边形网格上的仲裁 - Correa(AC)空间来解决耦合的Stokes-Darcy流问题。新型弱Galerkin方法用于达西方程的离散化。具体地,利用在元件内部和边缘中分别定义的分段恒定近似值来近似于达到压力。这些形状函数的离散弱梯度和数值达到速度在最低阶AC空间中建立。 Bernardi-Raugel元件(B R-1,Q(0))用于离散斯托克斯方程。这两种类型的离散化在界面上组合,其中应用了运动,正常应力和海狸-Joseph-Saffman(BJS)条件。严格的误差分析以及数值实验表明该方法稳定并且具有最佳顺序精度。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号