首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored density energy and its implementation for finite element analysis
【24h】

Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored density energy and its implementation for finite element analysis

机译:辅助正交材料:数值测定现象学用含量的储存密度能量及其实施的有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Auxetic materials, which have negative Poisson's ratio, show potential to be used in many interesting applications. Finite element analysis (FEA) is an important phase in implementing auxetic materials, but may become computationally expensive because simulation often needs microscale details and a fine mesh. It is also necessary to check that topological aspects of the microscale reflects not only micro but macromechanical behavior. This work presents a phenomenological approach to the problem using data-driven spline-based techniques to properly characterize orthotropic auxetic material requiring neither analytical constraints nor micromechanics, expanding on previous methods for isotropic materials. Hyperelastic energies of auxetic orthotropic material are determined from experimental data by solving the equilibrium differential functional equations directly, so no fitting or analytical estimation is necessary. This offers two advantages; (i) it allows the FEA study of orthotropic auxetic materials without requiring micromechanics considerations, reducing modeling and computational time costs by two to three orders of magnitude; (ii) it adapts the hyperelastic energies to the nature of the material with precision, which could be critical in scenarios where accuracy is essential (e.g. robotic surgery). (C) 2020 Elsevier B.V. All rights reserved.
机译:具有负泊松比率的辅助材料,显示出在许多有趣的应用中使用的潜力。有限元分析(FEA)是实现辅助材料的重要阶段,但可能变得昂贵,因为模拟通常需要微观细节和细网。还有必要检查微观尺度的拓扑方面不仅反映了微观但大致力学行为。该工作介绍了使用基于数据驱动的样条曲线的技术的问题的现象学方法,以适当地表征正交扶互式材料,所述正交辅助材料,所述正向辅助材料既不需要分析约束也不需要微观机械,以先前的各向同性材料的方法扩展。通过直接求解平衡差分功能方程,从实验数据确定辅助正交材料的超弹性能量,因此不需要拟合或分析估计。这提供了两个优点; (i)它允许在不需要微机械考虑的情况下进行正交性辅助材料的FEA研究,将建模和计算时间成本降低两到三个数量级; (ii)它适应高速能量,以精确度为材料的性质,这在精度至关重要的情况下可能是至关重要的(例如机器人手术)。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2020年第1期|113300.1-113300.20|共20页
  • 作者单位

    Univ Politecn Madrid Escuela Tecn Super Ingn Aeronaut & Espacio Plaza Cardenal Cisneros 3 Madrid 28040 Spain;

    Sheffield Hallam Univ Fac Sci Technol & Arts Mat & Engn Res Inst Howard St Sheffield S1 1WB S Yorkshire England|Manchester Metropolitan Univ Dept Engn Manchester Lancs England;

    Sheffield Hallam Univ Fac Sci Technol & Arts Mat & Engn Res Inst Howard St Sheffield S1 1WB S Yorkshire England;

    Univ Politecn Madrid Escuela Tecn Super Ingn Aeronaut & Espacio Plaza Cardenal Cisneros 3 Madrid 28040 Spain|Univ Florida Herbert Wertheim Coll Engn Dept Mech & Aerosp Engn Gainesville FL 32611 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Auxetic; Negative Poisson's ratio; Soft materials; Data-driven hyperelasticity; Orthotropy;

    机译:辅助;负泊松比例;软材料;数据驱动的高弹性;原位;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号