首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
【24h】

A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths

机译:用于随机循环和非比例负载路径的弹性塑料异质材料的经常性神经网络加速多尺度模型

获取原文
获取原文并翻译 | 示例

摘要

An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyses in solid mechanics.The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors. On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is selfequipped with hidden variables that have the ability of tracking loading history. On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data. In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths. The random loading paths are generated in a way similar to a random walking in stochastic process and allow generating data for a wide range of strain-stress states and state evolution.The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles. It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude. (C) 2020 Elsevier B.V. All rights reserved.
机译:人工神经网络(NNW)被设计为用作固体机制的多尺度分析的上下文中的微尺度模拟的替代模型。NNW的设计和训练方法是开发的,以便允许历史记录 - 依赖材料行为。一方面,构造了使用门控复发单元(GRU)的经常性神经网络(RNN),其允许模仿所需的内部变量,以解释历史依赖行为,因为RNN具有具有能力的隐藏变量跟踪加载历史记录。另一方面,为了在多维非比例加载条件下实现精度,使用顺序数据实现RNN的训练。特别地,从有限元模拟上收集顺序训练数据,以对随机装载路径进行的弹性塑料复合仪。随机加载路径以类似于随机处理的随机行走的方式生成,并允许产生广泛的应变应力状态和状态演化的数据。基于RNN的代理模型的准确性和效率在结构上进行了测试经过几个装载/卸载循环的开孔样品分析。结果表明,只要局部应变状态保持在训练范围即可,可以与基于RNN的代理模型相似的类似精度,而计算时间减少了四个数量级。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号