首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Surrogate modeling of high-dimensional problems via data-driven polynomial chaos expansions and sparse partial least square
【24h】

Surrogate modeling of high-dimensional problems via data-driven polynomial chaos expansions and sparse partial least square

机译:通过数据驱动多项式混沌扩展和稀疏部分最小正方形高维问题的替代模型

获取原文
获取原文并翻译 | 示例

摘要

Surrogate modeling techniques such as polynomial chaos expansion (PCE) are widely used to simulate the behavior of manufactured and physical systems for uncertainty quantification. An inherent limitation of many surrogate modeling methods is their susceptibility to the curse of dimensionality, that is, the computational cost becomes intractable for problems involving a high-dimensionality of the uncertain input parameters. In the paper, we address the issue by proposing a novel surrogate modeling method that enables the solution of high dimensional problems. The proposed surrogate model relies on a dimension reduction technique, called sparse partial least squares (SPLS), to identify the projection directions with largest predictive significance in the PCE surrogate. Moreover, the method does not require (or even assume the existence of) a functional form of the distribution of input variables, since a data-driven construction, which can ensure that the polynomial basis maintains the orthogonality for arbitrary mutually dependent randomness, is applied to surrogate modeling. To assess the performance of the method, a detailed comparison is made with several well-established surrogate modeling methods. The results show that the proposed method can provide an accurate representation of the response of high-dimensional problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:替代建模技术,如多项式混沌扩展(PCE)被广泛用于模拟制造和物理系统的行为以进行不确定量化。许多代理建模方法的固有限制是它们对维度诅咒的易感性,即,计算成本对于涉及不确定输入参数的高维度的问题变得棘手。在论文中,我们通过提出一种新的代理建模方法来解决问题,该方法能够解决高维问题。所提出的代理模型依赖于尺寸减少技术,称为稀疏部分最小二乘(SPLS),以识别PCE代理中具有最大预测意义的投影方向。此外,该方法不需要(甚至假设存在的存在形式的输入变量的分布,因为数据驱动的结构,这可以确保多项式基础维持任意相互依赖的随机性的正交性。代理建模。为了评估该方法的性能,用几种完善的代理建模方法进行详细的比较。结果表明,该方法可以提供高维问题的响应的准确表示。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号