首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Material and shape optimization of bi-directional functionally graded plates by GIGA and an improved multi-objective particle swarm optimization algorithm
【24h】

Material and shape optimization of bi-directional functionally graded plates by GIGA and an improved multi-objective particle swarm optimization algorithm

机译:GIGA和改进的多目标粒子群优化算法双向功能梯度板的材料和形状优化

获取原文
获取原文并翻译 | 示例

摘要

In the design of functionally graded materials, bi-directional design offers greater design freedom than the typical single-direction approach. This paper studies the shape and size design of variable-thickness bi-directional functionally graded plates (2D-FGPs) with multi-objective optimization. A method integrating generalized iso-geometrical analysis (GIGA) and an improved multi-objective particle swarm optimization algorithm (IMOPSO) is proposed, with numerous technical advantages. B-spline basis functions in two dimensions are used to robustly represent the volume fraction distribution, with volume fraction and shape profile at control points located along the plane set to be design variables. The mechanical behavior of the 2D-FGPs is treated with a third-order shear deformation theory and a non-uniform rational basis spline (NURBS)-based GIGA scheme. The IMOPSO algorithm incorporates chaotic sequence mapping, a diversity feedback mechanism, and a hybrid mutation mechanism to mitigate premature convergence and enhance evolution of the Pareto frontier. A number of test examples are provided, on square, circular, and gear FGPs with various loading configurations, optimizing for natural frequency and mass. (C) 2020 Elsevier B.V. All rights reserved.
机译:在功能分级材料的设计中,双向设计提供比典型的单向方法更大的设计自由。本文采用多目标优化研究可变厚度双向功能梯度板(2D-FGP)的形状和尺寸设计。提出了一种集成广义ISO-几何分析(GIGA)的方法和改进的多目标粒子群优化算法(IMOPSO),具有许多技术优点。在两个尺寸中使用两个尺寸的B样条函数来鲁棒地代表体积分量分布,在沿着平面设置为设计变量的控制点处的体积分数和形状轮廓。使用三阶剪切变形理论和非均匀的理性基础条纹(NURBS)的GIGA方案处理2D-FGP的力学行为。 IMOPSO算法包括混沌序列映射,分集反馈机制和混合突变机制,以减轻帕累托前沿的过早收敛和增强演变。在方形,圆形和齿轮FGP上提供了许多测试示例,具有各种装载配置,用于固定频率和质量。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号