首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A Fourier-accelerated volume integral method for elastoplastic contact
【24h】

A Fourier-accelerated volume integral method for elastoplastic contact

机译:弹塑性接触的傅里叶加速体积积分法

获取原文
获取原文并翻译 | 示例

摘要

The contact of solids with rough surfaces plays a fundamental role in physical phenomena such as friction, wear, sealing, and thermal transfer. However, its simulation is a challenging problem due to surface asperities covering a wide range of length-scales. In addition, non-linear local processes, such as plasticity, are expected to occur even at the lightest loads. In this context, robust and efficient computational approaches are required. We therefore present a novel numerical method, based on integral equations, capable of handling the large discretization requirements of real rough surfaces as well as the nonlinear plastic flow occurring below and at the contacting asperities. This method is based on a new derivation of the Mindlin fundamental solution in Fourier space, which leverages the computational efficiency of the fast Fourier transform. The use of this Mindlin solution allows a dramatic reduction of the memory imprint (as the Fourier coefficients are computed on-the-fly), a reduction of the discretization error, and the exploitation of the structure of the functions to speed up computation of the integral operators. We validate our method against an elastic-plastic FEM Hertz normal contact simulation and showcase its ability to simulate contact of rough surfaces with plastic flow. (C) 2019 Elsevier B.V. All rights reserved.
机译:固体用粗糙表面的接触在物理现象中起着基本作用,例如摩擦,磨损,密封和热转印。然而,由于覆盖各种长度尺度的表面粗糙度,其模拟是一个具有挑战性的问题。此外,预计甚至在最轻的负载下也会发生诸如可塑性的非线性局部过程。在这种情况下,需要强大和有效的计算方法。因此,我们提出了一种基于整体方程的新型数控方法,能够处理真正粗糙表面的大的离散化要求以及下面发生的非线性塑料流动以及接触粗糙度。该方法基于傅立叶空间中Mindlin基本解决方案的新推导,从而利用了快速傅里叶变换的计算效率。这种Mindlin解决方案的使用允许对存储器压印的急剧降低(随着傅立叶系数在飞行中计算),降低离散化错误,以及利用功能的结构来加速计算积分运营商。我们验证了我们对弹性塑料FEM HERTZ正常接触仿真的方法,并展示了模拟粗糙表面与塑料流动的接触的能力。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号